题目内容

【题目】已知函数f(x)=asinx﹣bcosx(a,b为常数,a≠0,x∈R)在x= 处取得最大值,则函数y=f(x+ )是(
A.奇函数且它的图象关于点(π,0)对称
B.偶函数且它的图象关于点( ,0)对称
C.奇函数且它的图象关于点( ,0)对称
D.偶函数且它的图象关于点(π,0)对称

【答案】B
【解析】解:将已知函数变形f(x)=asinx﹣bcosx= sin(x﹣φ),其中tanφ=

又f(x)=asinx﹣bcosx在x= 处取得最大值,

﹣φ=2kπ+ (k∈Z)得φ=﹣ ﹣2kπ(k∈Z),

∴f(x)= sin(x+ ),

∴函数y=f(x+ )= sin(x+ )= cosx,

∴函数是偶函数且它的图象关于点( ,0)对称.

故选:B.

将已知函数变形f(x)=asinx﹣bcosx= sin(x﹣φ),根据f(x)=asinx﹣bcosx在x= 处取得最大值,求出φ的值,化简函数,即可得出结论.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网