ÌâÄ¿ÄÚÈÝ
3£®ÒÑÖªÅ×ÎïÏßx2=4yµÄ½¹µãΪF£®£¨1£©ÒÑÖªxÖáÉÏÒ»µãE£¬ÈôÏ߶ÎEFµÄÖеãÔÚÅ×ÎïÏßÉÏ£¬ÇóµãEµÄ×ø±ê£»
£¨2£©Ö±Ïßl¹ýµãF£¬ÓëÅ×ÎïÏß½»ÓÚA¡¢BÁ½µã£¬ÇÒ$\overrightarrow{AF}$=2$\overrightarrow{FB}$£¬ÇóÖ±ÏßlµÄбÂÊ£»
£¨3£©ÈôM¡¢NΪÅ×ÎïÏßÉÏÈÎÒâÁ½µã£¬ÇÒÒÔMNΪֱ¾¶µÄÔ²¹ýÔµãO£¬ÇóÖ¤£ºÖ±ÏßMN¾¹ý¶¨µã£¬²¢Ð´³öÕâ¸ö¶¨µãµÄ×ø±ê£»
£¨4£©¹ýÅ×ÎïÏßÉÏÒ»µãP£¨-4£¬4£©×÷Á½Ìõ¹ØÓÚÖ±Ïßy=4¶Ô³ÆµÄÖ±Ïß·Ö±ð½»Å×ÎïÏßÓÚC¡¢DÁ½µã£¬ÇóÖ±ÏßCDµÄбÂÊ£»
£¨5£©ÈôбÂÊΪ2µÄÖ±ÏßÓëÅ×ÎïÏß½»ÓÚG¡¢HÁ½µã£¬ÇóÏ߶ÎGHµÄ´¹Ö±Æ½·ÖÏßÔÚyÖáÉϵĽؾàµÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨1£©Éè³öEµã×ø±ê£¬ÔÙÉè³öEFÖеã×ø±ê£¬ÓÉÖеã×ø±ê¹«Ê½°ÑÖеã×ø±êÓÃEµÄ×ø±ê±íʾ£¬´úÈëÅ×ÎïÏß·½³ÌÇóµÃEµÄ×ø±ê£»
£¨2£©Éè³öÖ±ÏßlµÄ·½³ÌΪy=kx+1£¬ÁªÁ¢Ö±Ïß·½³ÌÓëÅ×ÎïÏß·½³Ì£¬»¯Îª¹ØÓÚxµÄÒ»Ôª¶þ´Î·½³Ì£¬Çó³öÁ½½»µã×ø±ê£¬½áºÏ$\overrightarrow{AF}$=2$\overrightarrow{FB}$£¬ÇóµÃkµÄÖµ£»
£¨3£©ÉèM£¨s£¬$\frac{1}{4}{s}^{2}$£©£¬N£¨t£¬$\frac{1}{4}{t}^{2}$£©£¬ÓÉOM¡ÍON£¬µÃµ½st=-16£¬ÓÉÁ½µãÇóбÂʵõ½Ö±ÏßMNµÄбÂÊΪ$\frac{\frac{1}{4}£¨{t}^{2}-{s}^{2}£©}{t-s}=\frac{1}{4}£¨s+t£©$£¬»¯¼òµÃµ½$y=\frac{1}{4}£¨s+t£©x+4$£¬ÓÉ´Ë¿É˵Ã÷Ö±Ï߱عý£¨0£¬4£©µã£»
£¨4£©ÉèPCËùÔÚÖ±Ïß·½³ÌΪy-4=k£¨x+4£©£¬ÔòPDËùÔÚÖ±Ïß·½³ÌΪy-4=-k£¨x+4£©£¬·Ö±ðÁªÁ¢Á½Ö±Ïß·½³ÌÓëÅ×ÎïÏß·½³Ì£¬Çó³öC£¬D×ø±ê£¬ÓÉбÂʹ«Ê½¼´¿ÉÇóµÃÖ±ÏßCDµÄбÂÊ£»
£¨5£©ÉèG¡¢HËùÔÚÖ±Ïß·½³ÌΪy=2x+b£¬ÁªÁ¢Ö±Ïß·½³ÌºÍÅ×ÎïÏß·½³Ì£¬ÓÉÅбðʽ´óÓÚ0Çó³öbµÄ·¶Î§£¬ÓɸùÓëϵÊý¹ØϵÇóµÃGHÖеã×ø±ê£¬µÃµ½Ï߶ÎGHµÄ´¹Ö±Æ½·ÖÏß·½³Ì£¬È¡x=0£¬¿ÉµÃÏ߶ÎGHµÄ´¹Ö±Æ½·ÖÏßÔÚyÖáÉϵĽؾàµÄÈ¡Öµ·¶Î§£®
½â´ð £¨1£©½â£ºÓÉx2=4y£¬µÃF£¨0£¬1£©£¬ÉèE£¨m£¬0£©£¬EFÖеãΪ£¨x£¬y£©£¬
ÓÉ$\left\{\begin{array}{l}{0+m=2x}\\{1+0=2y}\end{array}\right.$£¬µÃ$\left\{\begin{array}{l}{x=\frac{m}{2}}\\{y=\frac{1}{2}}\end{array}\right.$£¬´úÈëx2=4y£¬µÃ$\frac{{m}^{2}}{4}=4¡Á\frac{1}{2}$£¬½âµÃ£ºm=$¡À2\sqrt{2}$£®
¡àE£¨$¡À2\sqrt{2}£¬0$£©£»
£¨2£©½â£ºÉèÖ±ÏßlµÄбÂÊΪk£¬ÔòÖ±ÏßlµÄ·½³ÌΪy=kx+1£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+1}\\{{x}^{2}=4y}\end{array}\right.$£¬µÃx2-4kx-4=0£¬
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©£¬
½âµÃ£º$\left\{\begin{array}{l}{{x}_{1}=2k-2\sqrt{{k}^{2}+1}}\\{{x}_{2}=2k+2\sqrt{{k}^{2}+1}}\end{array}\right.$»ò$\left\{\begin{array}{l}{{x}_{1}=2k+2\sqrt{{k}^{2}+1}}\\{{x}_{2}=2k-2\sqrt{{k}^{2}+1}}\end{array}\right.$£®
ÓÉ$\overrightarrow{AF}$=2$\overrightarrow{FB}$£¬µÃ£¨-x1£¬1-y1£©=2£¨x2£¬y2-1£©=£¨2x2£¬2y2-2£©£¬¼´-x1=2x2£®
°Ñx1£¬x2·Ö±ð´úÈë-x1=2x2£®½âµÃ£ºk=$¡À\frac{\sqrt{2}}{4}$£»
£¨3£©Ö¤Ã÷£º¡ßM¡¢NΪÅ×ÎïÏßÉÏÈÎÒâÁ½µã£¬¡àÉèM£¨s£¬$\frac{1}{4}{s}^{2}$£©£¬N£¨t£¬$\frac{1}{4}{t}^{2}$£©£¬
¡ßOM¡ÍON£¬¡à$st+\frac{{s}^{2}{t}^{2}}{16}=0$£¬¼´st=-16£¬
Ö±ÏßMNµÄбÂÊΪ$\frac{\frac{1}{4}£¨{t}^{2}-{s}^{2}£©}{t-s}=\frac{1}{4}£¨s+t£©$£¬
¡àÖ±ÏßMNÀûÓõãбʽ·½³ÌΪy-$\frac{1}{4}{s}^{2}=\frac{1}{4}£¨s+t£©£¨x-s£©$£¬»¯¼òµÃµ½$y=\frac{1}{4}£¨s+t£©x+4$£®
¡àÖ±Ï߱عý£¨0£¬4£©µã£»
£¨4£©½â£ºÉèPCËùÔÚÖ±Ïß·½³ÌΪy-4=k£¨x+4£©£¬ÔòPDËùÔÚÖ±Ïß·½³ÌΪy-4=-k£¨x+4£©£¬
ÔÙÉèC£¨x3£¬y3£©£¬D£¨x4£¬y4£©£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=kx+4k+4}\\{{x}^{2}=4y}\end{array}\right.$£¬µÃ£ºx2-4kx-16k-16=0£¬
ÓÉx3-4=4k£¬µÃx3=4k+4£¬Ôò${y}_{3}=4{k}^{2}+8k+4$£»
ͬÀíÇóµÃx4=-4k+4£¬${y}_{4}=4{k}^{2}-8k+4$£®
Ôò${k}_{CD}=\frac{{y}_{3}-{y}_{4}}{{x}_{3}-{x}_{4}}=\frac{16k}{8k}=2$£»
£¨5£©ÉèG¡¢HËùÔÚÖ±Ïß·½³ÌΪy=2x+b£¬
ÁªÁ¢$\left\{\begin{array}{l}{y=2x+b}\\{{x}^{2}=4y}\end{array}\right.$£¬µÃx2-8x-4b=0£®
ÓÉ¡÷=£¨-8£©2+16b£¾0£¬µÃb£¾-4£®
ÔÙÉèC£¨x5£¬y5£©£¬H£¨x6£¬y6£©£¬
Ôòx5+x6=8£¬¡àG£¬HÖеãºá×ø±êΪ4£¬×Ý×ø±êΪ8+b£¬
ÔòÏ߶ÎGHµÄ´¹Ö±Æ½·ÖÏß·½³ÌΪy-8-b=$-\frac{1}{2}$£¨x-4£©£¬
È¡x=0£¬µÃy=10+b£¬
¡ßb£¾-4£¬¡ày£¾6£®
ÔòÏ߶ÎGHµÄ´¹Ö±Æ½·ÖÏßÔÚyÖáÉϵĽؾàµÄÈ¡Öµ·¶Î§ÊÇ£¨6£¬+¡Þ£©£®
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éÁËÅ×ÎïÏßµÄÓ¦Óã¬Æ½Ãæ½âÎöʽµÄ»ù´¡ÖªÊ¶£®¿¼²éÁË¿¼ÉúµÄ»ù´¡ÖªÊ¶µÄ×ÛºÏÔËÓúÍ֪ʶǨÒƵÄÄÜÁ¦£¬ÊÇÖеµÌ⣮
¿ÕÆøÖÊÁ¿µÈ¼¶ | ÓÅ | Á¼ | Çá¶ÈÎÛȾ | ÖжÈÎÛȾ | ÖضÈÎÛȾ | ÑÏÖØÎÛȾ |
AQIÖµ·¶Î§ | [0£¬50£© | [50£¬100£© | [100£¬150£© | [150£¬200£© | [200£¬300£© | 300¼°ÒÔÉÏ |
Î÷²¿³ÇÊÐ | AQIÊýÖµ | ¶«²¿³ÇÊÐ | AQIÊýÖµ |
Î÷°² | 108 | ±±¾© | 104 |
Î÷Äþ | 92 | ½ðÃÅ | 42 |
¿ËÀÂêÒÀ | 37 | ÉϺ£ | x |
¶õ¶û¶à˹ | 56 | ËÕÖÝ | 114 |
°ÍÑåÄ׶û | 61 | Ìì½ò | 105 |
¿â¶ûÀÕ | 456 | ʯ¼Òׯ | 93 |
AQIƽ¾ùÖµ£º135 | AQIƽ¾ùÖµ£º90 |
£¨¢ò£©»·±£²¿ÃÅ´Ó¿ÕÆøÖÊÁ¿¡°ÓÅ¡±ºÍ¡°Çá¶ÈÎÛȾ¡±µÄÁ½Àà³ÇÊÐËæ»úÑ¡È¡3¸ö³ÇÊÐ×é֯ר¼Ò½øÐе÷ÑУ¬¼ÇÑ¡µ½¿ÕÆøÖÊÁ¿¡°Çá¶ÈÎÛȾ¡±µÄ³ÇÊиöÊýΪ¦Î£¬Çó¦ÎµÄ·Ö²¼ÁкÍÊýѧÆÚÍû£®