题目内容
9.已知函数f(x)=x2-2lnx,若0<x1<x2,求证:$\frac{{x}_{2}-{x}_{1}}{ln{x}_{2}-ln{x}_{1}}$<2x2.分析 运用分析法要证原不等式成立,即证ln$\frac{{x}_{2}}{{x}_{1}}$>$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{\frac{{x}_{2}}{{x}_{1}}+1}$,由于0<x1<x2,则$\frac{{x}_{2}}{{x}_{1}}$>1,构造函数g(x)=lnx-$\frac{2(x-1)}{x+1}$(x>1),求出导数判断单调性,即可得证.
解答 证明:要证$\frac{{x}_{2}-{x}_{1}}{ln{x}_{2}-ln{x}_{1}}$<$\frac{{x}_{1}+{x}_{2}}{2}$,
即证lnx2-lnx1>$\frac{2({x}_{2}-{x}_{1})}{{x}_{2}+{x}_{1}}$,
即证ln$\frac{{x}_{2}}{{x}_{1}}$>$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{\frac{{x}_{2}}{{x}_{1}}+1}$,
由于0<x1<x2,则$\frac{{x}_{2}}{{x}_{1}}$>1,
构造函数g(x)=lnx-$\frac{2(x-1)}{x+1}$(x>1),
g′(x)=$\frac{1}{x}$-$\frac{4}{(x+1)^{2}}$=$\frac{(x-1)^{2}}{x(x+1)^{2}}$>0,
则g(x)在(1,+∞)递增,即有g(x)>g(1)=0,
即有lnx>$\frac{2(x-1)}{x+1}$(x>1),即有ln$\frac{{x}_{2}}{{x}_{1}}$>$\frac{2(\frac{{x}_{2}}{{x}_{1}}-1)}{\frac{{x}_{2}}{{x}_{1}}+1}$,
则$\frac{{x}_{2}-{x}_{1}}{ln{x}_{2}-ln{x}_{1}}$<$\frac{{x}_{1}+{x}_{2}}{2}$,又0<x1<x2,可得$\frac{{x}_{1}+{x}_{2}}{2}$<x2<2x2
则原不等式得证.
点评 本题考查不等式的证明,注意运用分析法,以及构造函数通过导数判断单调性的方法,属于中档题.