题目内容

12.P为△ABC所在平面上一点,且满足$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$),则P的轨迹过△ABC的垂心.

分析 由$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$),得$\overrightarrow{AP}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$),两边同乘以向量$\overrightarrow{BC}$,利用向量的数量积运算可求得$\overrightarrow{AP}•\overrightarrow{BC}$=0,从而得到结论.

解答 解:由$\overrightarrow{OP}$=$\overrightarrow{OA}$+λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$),得$\overrightarrow{AP}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$),
两边同乘以向量$\overrightarrow{BC}$,得$\overrightarrow{AP}•\overrightarrow{BC}$=λ($\frac{\overrightarrow{AB}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}}{|\overrightarrow{AC}|cosC}$)$•\overrightarrow{BC}$=λ($\frac{\overrightarrow{AB}•\overrightarrow{BC}}{|\overrightarrow{AB}|cosB}$+$\frac{\overrightarrow{AC}•\overrightarrow{BC}}{|\overrightarrow{AC}|cosC}$)
=λ($\frac{|\overrightarrow{AB}||\overrightarrow{BC}|cos(-B)}{|\overrightarrow{AB}|cosB}$+$\frac{|\overrightarrow{AC}||\overrightarrow{BC}|cosC}{|\overrightarrow{AC}|cosC}$)=λ(-$|\overrightarrow{BC}|+|\overrightarrow{BC}|$)=0.
∴$\overrightarrow{AP}$⊥$\overrightarrow{BC}$,即点P在在BC边的高线上,
∴P的轨迹过△ABC的垂心.
故答案为:垂.

点评 本题考查平面向量数量积的运算、向量的线性运算性质及其几何意义,属中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网