题目内容
【题目】以直角坐标系的原点为极点, 轴正半轴为极轴,并在两种坐标系中取相同的长度单位,已知直线的参数方程为,( 为参数, ),曲线的极坐标方程为.
(1)求曲线的直角坐标方程;
(2)设直线与曲线相交于, 两点,当变化时,求的最小值.
【答案】(1)(2)2
【解析】试题分析:(1)本问考查极坐标与直角坐标互化公式,根据可得,所以曲线C的直角坐标方程为 ;(2)本问考查直线参数方程标准形式下的几何意义,即将直线参数方程的标准形式,代入到曲线C的直角坐标方程,得到关于t的一元二次方程,设两点对应的参数分别为,列出, , ,于是可以求出的最小值.
试题解析:(I)由由,得
曲线 的直角坐标方程为
(II)将直线的参数方程代入,得
设两点对应的参数分别为则, ,
当时, 的最小值为2.
练习册系列答案
相关题目
【题目】禽流感一直在威胁我们的生活,某疾病控制中心为了研究禽流感病毒繁殖个数(个)随时间(天)变化的规律,收集数据如下:
天数 | 1 | 2 | 3 | 4 | 5 | 6 |
繁殖个数 | 6 | 12 | 25 | 49 | 95 | 190 |
作出散点图可看出样本点分布在一条指数型函数的周围.
保留小数点后两位数的参考数据:
,,,,,,,,其中
(1)求出关于的回归方程(保留小数点后两位数字);
(2)已知,估算第四天的残差.
参考公式: