题目内容
4.函数f(x)=ln|x-1|+lg$\frac{x+1}{3-x}$的定义域是{x|-1<x<1或1<x<3}.分析 根据函数成立的条件即可求函数的定义域.
解答 解:要使函数有意义,则$\left\{\begin{array}{l}{x-1≠0}\\{\frac{x+1}{3-x}>0}\end{array}\right.$,
即$\left\{\begin{array}{l}{x≠1}\\{-1<x<3}\end{array}\right.$,
解得-1<x<1或1<x<3,
即函数的定义域为{x|-1<x<1或1<x<3},
故答案为:{x|-1<x<1或1<x<3}
点评 本题主要考查函数的定义域的求解,要求熟练掌握常见函数成立的条件.
练习册系列答案
相关题目
19.已知f(x)=$\left\{\begin{array}{l}{1,}&{x≥0}\\{-1,}&{x<0}\end{array}\right.$,则不等式x+(x+2)•f(x+2)≤5的解集是( )
A. | (-$∞,\frac{3}{2}$] | B. | (-$∞,-\frac{3}{2}$] | C. | ($\frac{3}{2},+∞$) | D. | (-$\frac{3}{2},\frac{3}{2}$] |
19.如图,在矩形ABCD中,AB=3,BC=$\sqrt{3}$,过点A向BAD所在区域等可能任作一条射线AP,则事件“射线AP与线段BC有公共点”发生的概率为( )
A. | $\frac{\sqrt{3}}{3}$ | B. | $\frac{1}{3}$ | C. | $\frac{\sqrt{3}}{2}$ | D. | $\frac{1}{2}$ |