题目内容
4.|z-5+12i|≤2,则|z|的最小值为( )A. | 7 | B. | 9 | C. | 11 | D. | 15 |
分析 根据复数的几何意义,利用数形结合进行求解即可.
解答 解:由|z-5+12i|≤2得|z-(5-12i)|≤2,
则z的几何意义为以C(5,-12)为圆心,半径为2的圆及圆的内部,
则对应的图象为:
则|z|的几何意义为区域内的点到圆的距离,
则由图象知|z|的最小值为|OA|=|OC|-2=$\sqrt{{5}^{2}+(-12)^{2}}$-2=13-2=11,
故选:C
点评 本题主要考查复数的几何意义的应用,利用数形结合是解决本题的关键.
练习册系列答案
相关题目
9.生物兴趣小组的同学到野外调查某种植物的生长情况,共测量了k∈Z株该植物的高度(单位:厘米),获得数据如下:
6,7,8,9,10,14,16,17,17,18,19,20,20,21,24,26,26,27,28,29,29,30,30,30,31,31,33,36,37,41.
根据上述数据得到样本的频率分布表如下:
(1)确定样本频率分布表中n1,n2,f1和f2的值;
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)用(2)的频率分布直方图估计该植物生长高度的平均值.
6,7,8,9,10,14,16,17,17,18,19,20,20,21,24,26,26,27,28,29,29,30,30,30,31,31,33,36,37,41.
根据上述数据得到样本的频率分布表如下:
分组 | 频数 | 频率 |
[5,15] | 6 | 0.2 |
(15,25] | 9 | 0.3 |
(25,35] | n1 | f1 |
(35,45] | n2 | f2 |
(2)根据上述频率分布表,画出样本频率分布直方图;
(3)用(2)的频率分布直方图估计该植物生长高度的平均值.
12.函数y=sin2x的导数是( )
A. | y=2sinx | B. | y=sin2x | C. | y=2sin2x | D. | y=2cosx |
9.若a+b=1,则恒有( )
A. | ab≥$\frac{1}{4}$ | B. | ab≤$\frac{1}{4}$ | C. | $\frac{1}{ab}$≥4 | D. | a2+b2≥1 |
14.$|\vec a|=1,|\vec b|=2$则$\vec a$与$\vec b$的夹角为120°,则$(\vec a+2\vec b)•(2\vec a+\vec b)$的值为( )
A. | -5 | B. | 5 | C. | $-\sqrt{5}$ | D. | $\sqrt{5}$ |