题目内容
1.设实数x,y满足约束条件$\left\{\begin{array}{l}{x+y-1≥0}\\{x-1≤0}\\{x-y+1≥0}\end{array}\right.$,若z=-2x+y,则z的最小值是-2.分析 由约束条件作出可行域,结合图形得到使目标函数z=-2x+y的最优解,代入坐标求得z=-2x+y的最小值.
解答 解:由约束条件$\left\{\begin{array}{l}x+y-1≥0\\ x-1≤0\\ x-y+1≥0\end{array}\right.$作可行域如图,
由图可知,可行域中点A的坐标是使目标函数z=-2x+y取得最小值的最优解.
在$\left\{\begin{array}{l}x+y-1=0\\ x-1=0\end{array}\right.$中,解得y=0得x=1.
∴点A的坐标为(1,0).
则z=-2x+y的最小值是-2×1+0=-2.
故答案为:-2.
点评 本题考查了简单的线性规划,体现了数形结合的解题思想方法,解答的关键是正确作出可行域,是中档题.
练习册系列答案
相关题目
12.已知函数f(x)=sin(x-$\frac{π}{3}$),若x1x2>0,且f(x1)+f(x2)=0,则|x1+x2|的最小值为( )
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{2}$ | D. | $\frac{2π}{3}$ |