题目内容

如图,已知直三棱柱ABCA1B1C1EF分别是棱CC1AB中点。
(1)求证:
(2)求四棱锥A—ECBB1的体积;
(3)判断直线CF和平面AEB1的位置关系,并加以证明。
4,平面AEB1
解:  (1)证明:三棱柱ABC—A1B1C1是直棱柱,
平面ABC   1分
平面ABC,    2分
    3分
(2)解:三棱柱ABC—A1B1C1是直棱柱,
平面ABC,
平面ABC




平面ECBB1    6分
    7分
是棱CC1的中点,

 
    8分
  (3)解:CF//平面AEB1,证明如下:
取AB1的中点G,联结EG,FG
分别是棱AB、AB1中点



四边形FGEC是平行四边形                       
平面AEB,平面AEB1
平面AEB1。12分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网