题目内容

1.已知定义在R上的函数f(x)满足f(1)=1,且对于任意的x,f′(x)$<\frac{1}{2}$恒成立,则不等式f(lg2x)<$\frac{l{g}^{2}x}{2}$+$\frac{1}{2}$的解集为(  )
A.(0,$\frac{1}{10}$)B.(10,+∞)C.($\frac{1}{10}$,10)D.(0,$\frac{1}{10}$)∪(10,+∞)

分析 设g(x)=f(x)-$\frac{1}{2}$x,由f′(x)<$\frac{1}{2}$,得到g′(x)小于0,得到g(x)为减函数,将所求不等式变形后,利用g(x)为减函数求出x的范围,即为所求不等式的解集.

解答 解:设g(x)=f(x)-$\frac{1}{2}$x,由f′(x)<$\frac{1}{2}$,得到g′(x)=f′(x)-$\frac{1}{2}$<0,
∴g(x)为减函数.
又f(1)=1,
∵f(lg2x)<$\frac{l{g}^{2}x}{2}$+$\frac{1}{2}$,
∴g(lg2x)=f(lg2x)-$\frac{1}{2}$lg2x<$\frac{l{g}^{2}x}{2}$+$\frac{1}{2}$-$\frac{1}{2}$lg2x=$\frac{1}{2}$=f(1)-$\frac{1}{2}$=g(1)=g(lg210),
∴lg2x>lg210,
∴(lgx+lg10)(lgx-lg10)>0,
∴lgx<-lg10,或lgx>lg10,
解得0<x<$\frac{1}{10}$,或x>10,
故选:D

点评 本题考查了其他不等式的解法,涉及的知识有:利用导数研究函数的增减性,对数函数的单调性及特殊点,以及对数的运算性质,是一道综合性较强的试题,属于中档题

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网