题目内容
【题目】在△ABC中,内角A、B、C的对边分别为a,b,c,且2asinB﹣ bcosA=0.
(1)求cosA;
(2)若a= ,b=2,求△ABC的面积.
【答案】
(1)解:在△ABC中,内角A、B、C的对边分别为a,b,c,
将等式2asinB﹣ bcosA=0,利用正弦定理化简得:2sinAsinB﹣ sinBcosA=0,
∵sinB≠0,∴2sinA﹣ cosA=0,即tanA= ,
则cosA= =
(2)解:∵cosA= ,∴sinA= ,
∵a= ,b=2,
∴由正弦定理得:sinB= = ,cosB= ,
∴sinA=cosB,cosA=sinB,即A+B=C= ,
则S△ABC= × ×2=
【解析】(1)已知等式利用正弦定理化简,根据sinB不为0确定出tanA的值,进而求出cosA的值;(2)由cosA的值,利用同角三角函数间的基本关系求出sinA的值,再利用正弦定理求出sinB的值,进而求出cosB的值,确定出sinA=cosB,cosA=sinB,即C为直角,确定出三角形面积即可.
【考点精析】关于本题考查的余弦定理的定义,需要了解余弦定理:;;才能得出正确答案.
练习册系列答案
相关题目
【题目】某厂生产甲、乙两种产品每吨所需的煤、电和产值如下表所示.
用煤(吨) | 用电(千瓦) | 产值(万元) | |
甲产品 | 3 | 50 | 12 |
乙产品 | 7 | 20 | 8 |
但国家每天分配给该厂的煤、电有限,每天供煤至多47吨,供电至多300千瓦,问该厂如何安排生产,使得该厂日产值最大?最大日产值为多少?