题目内容
已知P,Q为抛物线f(x)=
上两点,点P,Q的横坐标分别为4,-2,过P、Q分别作抛物线的切线,两切线交于点A,则点A的纵坐标为______.
x2 |
2 |
因为点P,Q的横坐标分别为4,-2,
代入抛物线方程得P,Q的纵坐标分别为8,2.
由x2=2y,则y=
x2,所以y′=x,
过点P,Q的抛物线的切线的斜率分别为4,-2,
所以过点P,Q的抛物线的切线方程分别为y=4x-8,y=-2x-2
联立方程组解得x=1,y=-4
故点A的纵坐标为-4.
故答案为:-4.
代入抛物线方程得P,Q的纵坐标分别为8,2.
由x2=2y,则y=
1 |
2 |
过点P,Q的抛物线的切线的斜率分别为4,-2,
所以过点P,Q的抛物线的切线方程分别为y=4x-8,y=-2x-2
联立方程组解得x=1,y=-4
故点A的纵坐标为-4.
故答案为:-4.
练习册系列答案
相关题目