题目内容
【题目】已知抛物线的焦点与椭圆:的一个顶点重合,且这个顶点与椭圆的两个焦点构成的三角形面积为.
(1)求椭圆的方程;
(2)若椭圆的上顶点为,过作斜率为的直线交椭圆于另一点,线段的中点为,为坐标原点,连接并延长交椭圆于点,的面积为,求的值.
【答案】(1);(2).
【解析】分析:(1)根据抛物线的性质可得椭圆中的,再根据三角形的面积求出,根据,即可求出椭圆方程,
(Ⅱ)过点的直线方程为,代入到由得,可求出点的坐标,再求出的坐标和的坐标,以及|和点到直线的距离,根据三角形的面积求出的值.
详解:
(1)因为抛物线的焦点与椭圆的一个顶点重合,∴,
又椭圆的顶点与其两个焦点构成的三角形的面积为,
∴,
∴
故椭圆的方程是.
(2)由题意设直线的方程为,设点
由得
解得
∴,
∴
直线斜率,直线的方程为,
由得
点到直线:的距离为
∵,∴,又,
∴
令,则,解得
,∴,解得或(舍)
∴的值为.
练习册系列答案
相关题目
【题目】某酱油厂对新品种酱油进行了定价,在各超市得到售价与销售量的数据如下表:
单价(元) | 5 | 5.2 | 5.4 | 5.6 | 5.8 | 6 |
销量(瓶) | 9.0 | 8.4 | 8.3 | 8.0 | 7.5 | 6.8 |
(1)求售价与销售量的回归直线方程;( ,)
(2)预计在今后的销售中,销量与单价仍然服从(1)中的关系,且该产品的成本是4元/瓶,为使工厂获得最大利润(利润=销售收入成本),该产品的单价应定为多少元?
相关公式:,.