题目内容
【题目】已知椭圆的离心率为
,且过点
,若点
在椭圆C上,则点
称为点M的一个“椭点”.
(1)求椭圆C的标准方程;
(2)若直线与椭圆C相交于A,B两点,且A,B两点的“椭点”分别为P,Q,以PQ为直径的圆经过坐标原点,试判断
的面积是否为定值?若为定值,求出定值;若不为定值,说明理由.
【答案】(1)(2)为定值,
【解析】
(1)根据椭圆的离心率为
,得到
,又过点
,得到
,联立求解.
(2)设,则
.联立直线
与椭圆的方程,由于以
为直径的圆经过坐标原点,所以
,即
从而得到
,再求得弦长
,点o到直线的距离
,得到
再求解..
(1)根据题意得,
解得
所以椭圆的方程为.
(2)设,则
.
由于以为直径的圆经过坐标原点,所以
,即
.
由,
,即
,
由韦达定理得 ,
.
代入,得
,
,
原点到直线AB的距离为:.
所以
所以的面积为定值
.
![](http://thumb.zyjl.cn/images/loading.gif)
【题目】某手机厂商在销售200万台某型号手机时开展“手机碎屏险”活动、活动规则如下:用户购买该型号手机时可选购“手机碎屏险”,保费为元,若在购机后一年内发生碎屏可免费更换一次屏幕.该手机厂商将在这
万台该型号手机全部销售完毕一年后,在购买碎屏险且购机后一年内未发生碎屏的用户中随机抽取
名,每名用户赠送
元的红包,为了合理确定保费
的值,该手机厂商进行了问卷调查,统计后得到下表(其中
表示保费为
元时愿意购买该“手机碎屏险”的用户比例);
(1)根据上面的数据求出关于
的回归直线方程;
(2)通过大数据分析,在使用该型号手机的用户中,购机后一年内发生碎屏的比例为.已知更换一次该型号手机屏幕的费用为
元,若该手机厂商要求在这次活动中因销售该“手机碎屏险”产生的利润不少于
万元,能否把保费
定为5元?
x | 10 | 20 | 30 | 40 | 50 |
y | 0.79 | 0.59 | 0.38 | 0.23 | 0.01 |
参考公式:回归方程中斜率和截距的最小二乘估计分别为
,
,
参考数据:表中的5个值从左到右分别记为
,相应的
值分别记为
,经计算有
,其中
,
.