题目内容
【题目】如图,四棱锥中,平面ABCD,四边形ABCD是矩形,且,,E是棱BC上的动点,F是线段PE的中点.
(Ⅰ)求证:平面ADF;
(Ⅱ)若直线DE与平面ADF所成角为30°,求EC的长.
【答案】(Ⅰ)详见解析(Ⅱ)
【解析】
方法1:(Ⅰ)取棱PB,PC的中点分别为M,N,连结AM,MN,ND,
由,可得,由平面PAB,可得,利用线面垂直的判断定理可以证明平面ADF;
(Ⅱ)方法1:由(Ⅰ)知平面AMND,在平面PBC内作,交MN于H,则平面AMND,连结DH,则就是直线DE与平面ADF所成角,即.通过三角函数,勾股定理,最后可以求出EC的长;
方法2:如图,以A为坐标原点建立空间直角坐标系,求出的坐标,设出点坐标,求出坐标.
(Ⅰ)求出平面ADF的法向量和向量的坐标表示,从而可以证明平面ADF;
(Ⅱ)设直线DE与平面ADF所成角为,求线面角的坐标表示公式,可以求出点坐标,最后求出EC的长.
方法1:(Ⅰ)取棱PB,PC的中点分别为M,N,
连结AM,MN,ND,
因为,所以,
又因为平面PAB,平面PAB,
所以,且,
所以平面ADF.
(Ⅱ)方法1:由(Ⅰ)知平面AMND,在平面PBC内作,交MN于H,则平面AMND,连结DH,则就是直线DE与平面ADF所成角,即.
又因为,所以,得到.
因为,所以,
所以,故.
方法2:如图,以A为坐标原点建立空间直角坐标系,
则,
.
(I),
设平面ADF的法向量为,
则,从而取.
又,所以,从而平面ADF.
(Ⅱ)设直线DE与平面ADF所成角为,
由,平面ADF的法向量为,
故,解得,
所以,因此.
练习册系列答案
相关题目