题目内容
【题目】已知M是正四面体ABCD棱AB的中点,N是棱CD上异于端点C,D的任一点,则下列结论中,正确的个数有( )
(1)MN⊥AB;
(2)若N为中点,则MN与AD所成角为60°;
(3)平面CDM⊥平面ABN;
(4)不存在点N,使得过MN的平面与AC垂直.
A. 1 B. 2 C. 3 D. 4
【答案】C
【解析】逐一考查所给的四个说法:
(1)连结MC,MD,由三角形三线合一可得AB⊥CM,AB⊥DM,∴AB⊥平面MCD,
∵MN平面MCD,∴AB⊥MN,故(1)正确;
(2)取BD中点E,连结ME,NE,则∠NME或其补角为MN与AD所成角,
连结BN,由(1)知BM⊥MN,设正四面体棱长为1,则,
,∴cos∠NME=,∴∠NME=45°,故(2)不正确;
(3)由(1)知AB⊥平面CDM,∵AB平面ABN,∴平面CDM⊥平面ABN,故(3)正确;
(4)取BC中点F,连结MF,DF,假设存在点N,使得过MN的平面与AC垂直,
∴AC⊥MN,∵MF∥AC,∴MF⊥MN,
∵DF=DM=,∴∠FMD<90°,很明显∠CMF<90°.
当N从D向C移动时,∠FMN先减小,后增大,故∠FMN<90°,与MF⊥MN矛盾.
∴不存在点N,使得过MN的平面与AC垂直,故(4)正确.
本题选择C选项.
【题目】某兴趣小组欲研究昼夜温差大小与患感冒人数多少之间的关系,他们分别到气象局与某医院抄录了1至6月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如表资料:
日 期 | 1月10日 | 2月10日 | 3月10日 | 4月10日 | 5月10日 | 6月10日 |
昼夜温差x(°C) | 10 | 11 | 13 | 12 | 8 | 6 |
就诊人数y(个) | 22 | 25 | 29 | 26 | 16 | 12 |
该兴趣小组确定的研究方案是:先从这六组数据中选取2组,用剩下的4组数据求线性回归方程,再用被选取的2组数据进行检验.
(1)求选取的2组数据恰好是相邻两个月的概率;
(2)若选取的是1月与6月的两组数据,请根据2至5月份的数据,求出关于的线性回归方程;
(3)若由线性回归方程得到的估计数据与所选出的检验数据的误差均不超过2人,则认为得到的线性回归方程是理想的,试问(2)中所得线性回归方程是否理想?
参考公式:,