题目内容

【题目】如图,在等腰三角形ABC中,已知|AB|=|AC|=1,∠A=120°,E,F分别是AB,AC上的点,且 ,(其中λ,μ∈(0,1)),且λ+4μ=1,若线段EF,BC的中点分别为M,N,则 的最小值为

【答案】
【解析】解:连接AM、AN, ∵等腰三角形ABC中,AB=AC=1,A=120°,
=| || |cos120°=﹣
∵AM是△AEF的中线,
= + )= (λ
同理,可得 = + ),
由此可得 = = (1﹣λ) + (1﹣μ)
=[ (1﹣λ)+ (1﹣μ)]2= (1﹣λ)2+ (1﹣λ)(1﹣μ) +(1﹣μ)2= (1﹣λ)2 (1﹣λ)(1﹣μ)+ (1﹣μ)2
∵λ+4μ=1,可得1﹣λ=4μ,
∴代入上式得 = ×(4μ)2 ×4μ(1﹣μ)+(1﹣μ)2= μ2 μ+
∵λ,μ∈(0,1),
∴当μ=时, 的最小值为 ,此时| |的最小值为
所以答案是:

【考点精析】解答此题的关键在于理解平面向量的基本定理及其意义的相关知识,掌握如果是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数,使

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网