题目内容
【题目】如图,在等腰三角形ABC中,已知|AB|=|AC|=1,∠A=120°,E,F分别是AB,AC上的点,且 ,(其中λ,μ∈(0,1)),且λ+4μ=1,若线段EF,BC的中点分别为M,N,则 的最小值为 .
【答案】
【解析】解:连接AM、AN, ∵等腰三角形ABC中,AB=AC=1,A=120°,
∴ =| || |cos120°=﹣
∵AM是△AEF的中线,
∴ = ( + )= (λ +μ )
同理,可得 = ( + ),
由此可得 = ﹣ = (1﹣λ) + (1﹣μ)
∴ =[ (1﹣λ)+ (1﹣μ)]2= (1﹣λ)2+ (1﹣λ)(1﹣μ) +(1﹣μ)2= (1﹣λ)2﹣ (1﹣λ)(1﹣μ)+ (1﹣μ)2 ,
∵λ+4μ=1,可得1﹣λ=4μ,
∴代入上式得 = ×(4μ)2﹣ ×4μ(1﹣μ)+(1﹣μ)2= μ2﹣ μ+
∵λ,μ∈(0,1),
∴当μ=时, 的最小值为 ,此时| |的最小值为 .
所以答案是:
【考点精析】解答此题的关键在于理解平面向量的基本定理及其意义的相关知识,掌握如果、是同一平面内的两个不共线向量,那么对于这一平面内的任意向量,有且只有一对实数、,使.
【题目】如图所示,三棱柱ABC﹣A1B1C1的底面是边长为2正三角形,D是A1C1的中点,且AA1⊥平面ABC,AA1=3.
(Ⅰ)求证:A1B∥平面B1DC;
(Ⅱ)求二面角D﹣B1C﹣C1的余弦值.
【题目】已知抛物线C:y2=8x的焦点为F,准线l与x轴的交点为M,过点M的直线l′与抛物线C的交点为P,Q,延长PF交抛物线C于点A,延长QF交抛物线C于点B,若 + =22,则直线l′的方程为 .
【题目】由于雾霾日趋严重,政府号召市民乘公交出行.但公交车的数量太多会造成资源的浪费,太少又难以满足乘客需求.为此,某市公交公司在某站台的60名候车乘客中进行随机抽样,共抽取10人进行调查反馈,所选乘客情况如下表所示:
组别 | 候车时间(单位:min) | 人数 |
一 | [0,5) | 1 |
二 | [5,10) | 5 |
三 | [10,15) | 3 |
四 | [15,20) | 1 |
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)现从这10人中随机取3人,求至少有一人来自第二组的概率;
(3)现从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.