题目内容
【题目】为了得到函数y= sin(2x﹣ )的图象,只需将函数y=sinxcosx的图象( )
A.向左平移 个单位
B.向右平移 个单位
C.向左平移 个单位
D.向右平移 个单位
【答案】D
【解析】解:∵y=sinxcosx= sin2x,
∴将函数y=sinxcosx的图象向右平行移动 个单位长度,得到y= sin2(x﹣ )= sin(2x﹣ )的图象.
故选:D.
【考点精析】利用函数y=Asin(ωx+φ)的图象变换对题目进行判断即可得到答案,需要熟知图象上所有点向左(右)平移个单位长度,得到函数的图象;再将函数的图象上所有点的横坐标伸长(缩短)到原来的倍(纵坐标不变),得到函数的图象;再将函数的图象上所有点的纵坐标伸长(缩短)到原来的倍(横坐标不变),得到函数的图象.
【题目】为了研究学生的数学核素养与抽象(能力指标x)、推理(能力指标y)、建模(能力指标z)的相关性,并将它们各自量化为1、2、3三个等级,再用综合指标w=x+y+z的值评定学生的数学核心素养;若w≥7,则数学核心素养为一级;若5≤w≤6,则数学核心素养为二级;若3≤w≤4,则数学核心素养为三级,为了了解某校学生的数学核素养,调查人员随机访问了某校10名学生,得到如下结果:
学生编号 | A1 | A2 | A3 | A4 | A5 | A6 | A7 | A8 | A9 | A10 |
(x,y,z) | (2,2,3) | (3,2,3) | (3,3,3) | (1,2,2) | (2,3,2) | (2,3,3) | (2,2,2) | (2,3,3) | (2,1,1) | (2,2,2) |
(1)在这10名学生中任取两人,求这两人的建模能力指标相同的概率;
(2)从数学核心素养等级是一级的学生中任取一人,其综合指标为a,从数学核心素养等级不是一级的学生中任取一人,其综合指标为b,记随机变量X=a﹣b,求随机变量X的分布列及其数学期望.