题目内容

【题目】已知数列{an}满足a1=1,an= (n∈N* , n≥2),数列{bn}满足关系式bn= (n∈N*).
(1)求证:数列{bn}为等差数列;
(2)求数列{an}的通项公式.

【答案】
(1)证明:∵an= (n∈N*,n≥2),

= =2+ ,即bn=2+bn1(n≥2),

又∵a1=1,

∴b1=1,

∴数列{bn}是以1为首项、2为公差的等差数列;


(2)解:由(1)可知bn=1+2(n﹣1)=2n﹣1,

∴数列{an}的通项公式an=


【解析】(1)通过对an= (n∈N* , n≥2)两边同时取倒数、整理得 =2+ ,进而可知数列{bn}是以1为首项、2为公差的等差数列;(2)通过(1)可知bn=2n﹣1,进而求倒数可得结论.
【考点精析】本题主要考查了等差关系的确定和数列的通项公式的相关知识点,需要掌握如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,即=d ,(n≥2,n∈N)那么这个数列就叫做等差数列;如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式才能正确解答此题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网