题目内容
【题目】如图,在平面直角坐标系xOy中,设椭圆 =1(a>b>0)的左、右焦点分别为F1 , F2 , 右顶点为A,上顶点为B,离心率为e.椭圆上一点C满足:C在x轴上方,且CF1⊥x轴.
(1)若OC∥AB,求e的值;
(2)连结CF2并延长交椭圆于另一点D若 ≤e≤ ,求 的取值范围.
【答案】
(1)
解:椭圆 =1(a>b>0)的焦距为2c,
由CF1⊥x轴.则C(﹣c,y0),y0>0,
由C在椭圆上,则y0= ,则C(﹣c, ),
由OC∥AB,则﹣ =kOC=kAB=﹣ ,则b=c,
e= = = ,
e的值
(2)
解:设D(x1,y1),设 =λ ,
C(﹣c, ),F2(c,0),
故 =(2c,﹣ ), =(x1﹣c,y1),
由 =λ ,则2c=λ(x1﹣c),﹣ =λy1,则D( c,﹣ ),
由点D在椭圆上,则( )2e2+ =1,整理得:(λ2+4λ+3)e2=λ2﹣1,
由λ>0,e2= = =1﹣ ,
由 ≤e≤ ,则 ≤e2≤ ,则 ≤1﹣ ≤ ,
解得: ≤λ≤5,
∴ 的取值范围[ ,5]
【解析】(1)由CF1⊥x轴.则C(﹣c, ),根据直线的斜率相等,即可求得b=c,利用离心率公式即可求得e的值;(2)根据向量的坐标运算,求得D点坐标,代入椭圆方程,求得e2= =1﹣ ,由离心率的取值范围,即可求得λ的取值范围.
【题目】某手机厂商推出一次智能手机,现对500名该手机使用者(200名女性,300名男性)进行调查,对手机进行打分,打分的频数分布表如下:
女性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
频数 | 20 | 40 | 80 | 50 | 10 | |
男性用户 | 分值区间 | [50,60) | [60,70) | [70,80) | [80,90) | [90,100) |
频数 | 45 | 75 | 90 | 60 | 30 |
(1)完成下列频率分布直方图,并比较女性用户和男性用户评分的方差大小(不计算具体值,给出结论即可);
(2)根据评分的不同,运用分层抽样从男性用户中抽取20名用户,在这20名用户中,从评分不低于80分的用户中任意取3名用户,求3名用户评分小于90分的人数的分布列和期望.