题目内容
16.已知函数f(x)=$\sqrt{3}$sinωx+cosωx(ω>0)的图象与x轴交点的横坐标构成一个公差为$\frac{π}{2}$的等差数列,把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,得到函数g(x)的图象.若在区间[0,π]上随机取一个数x,则事件“g(x)≥1”发生的概率为( )A. | $\frac{1}{4}$ | B. | $\frac{1}{3}$ | C. | $\frac{1}{6}$ | D. | $\frac{2}{3}$ |
分析 由两角和的正弦把三角函数化简,结合已知求出周期,进一步得到ω,则三角函数的解析式可求,再由图象平移得到g(x)的解析式,确定满足g(x)≥1的范围,根据几何概型利用长度之比可得结论.
解答 解:∵f(x)=$\sqrt{3}$sinωx+cosωx=2sin(ωx+$\frac{π}{6}$),
由题意知$\frac{T}{2}$=$\frac{π}{2}$,则T=π,∴ω=$\frac{2π}{π}$=2,
∴f(x)=2sin(2x+$\frac{π}{6}$),
把函数f(x)的图象沿x轴向左平移$\frac{π}{6}$个单位,得g(x)=f(x+$\frac{π}{6}$)=2sin[2(x+$\frac{π}{6}$)+$\frac{π}{6}$]=2sin(2x+$\frac{π}{2}$)=2cos2x.
∵2cos2x≥1,x∈[0,π],可得:cos2x$≥\frac{1}{2}$,解得:x∈[0,$\frac{π}{3}$],
∴事件“g(x)≥1”发生的概率为$\frac{\frac{π}{3}}{π}$=$\frac{1}{3}$.
故选:B.
点评 本题考查了命题的真假判断与应用,考查了三角函数的图象和性质,本题考查几何概型,三角函数的化简,学生的计算能力,属于中档题.
练习册系列答案
相关题目
4.连续抛掷两次骰子得到的点数分别为m和n,记向量$\overrightarrow{a}$=(m,n),向量$\overrightarrow{b}$=(1,-2),则$\overrightarrow{a}$⊥$\overrightarrow{b}$的概率是( )
A. | $\frac{1}{12}$ | B. | $\frac{1}{6}$ | C. | $\frac{7}{36}$ | D. | $\frac{2}{9}$ |