题目内容
【题目】已知函数f(x)=x2+m与函数 的图象上至少存在一对关于x轴对称的点,则实数m的取值范围是( )
A.
B.
C.
D.[2﹣ln2,2]
【答案】D
【解析】解:由已知,得到方程x2+m=ln +3xm=﹣lnx+3x﹣x2在[ ,2]上有解. 设f(x)=﹣lnx+3x﹣x2 ,
求导得:f′(x)=﹣ +3﹣2x=﹣ =﹣ ,
∵ ≤x≤2,
令f′(x)=0,解得x= 或x=1,
当f′(x)>0时, <x<1函数单调递增,
当f′(x)<0时,1<x<2函数单调减,
∴在x=1有唯一的极值点,
∵f( )=ln2+ ,f(2)=﹣ln2+2,f(x)极大值=f(1)=2,且知f(2)<f( ),
故方程m=﹣lnx+3x﹣x2在[ ,2]上有解等价于2﹣ln2≤m≤2.
从而m的取值范围为[2﹣ln2,2].
故选:D.
练习册系列答案
相关题目
【题目】已知{an}是首项为19,公差为-2的等差数列,Sn为{an}的前n项和.
(1)求通项an及Sn;
(2)设{bn-an}是首项为1,公比为3的等比数列,求数列{bn}的通项公式及前n项和Tn.
【题目】某电脑公司有6名产品推销员,其中工作年限与年推销金额数据如下表:
推销员编号 | 1 | 2 | 3 | 4 | 5 |
工作年限/年 | 3 | 5 | 6 | 7 | 9 |
推销金额/万元 | 2 | 3 | 4 | 5 | 6 |
(1)请画出上表数据的散点图;
(2)求年推销金额关于工作年限的线性回归方程;
(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.
,.