题目内容
若直线
与圆
相离,则点
的位置是
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171208778666.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171208793551.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171208824551.png)
A.在圆上 | B.在圆外 | C.在圆内 | D.以上都有可能 |
C
专题:计算题.
分析:根据直线与圆的位置关系,得到圆心到直线的距离大于半径,得到关于a,b的关系式,这个关系式正好是点到圆心的距离,得到圆心与点到距离小于半径,得到点在圆的内部.
解答:解:∵直线ax+by+1=0与圆x2+y2=1相离,
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171208840560.png)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823171208856519.png)
∴点P(a,b)到圆心的距离小于半径,
∴点在圆内,
故选C.
点评:本题考查直线与圆的位置关系和点与圆的位置关系,本题解题的关键是正确利用点到直线的距离公式,本题是一个基础题.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目