题目内容
11.已知(2,0)是双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的一个焦点,则b=$\sqrt{3}$.分析 求得双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的焦点为($\sqrt{1+{b}^{2}}$,0),(-$\sqrt{1+{b}^{2}}$,0),可得b的方程,即可得到b的值.
解答 解:双曲线x2-$\frac{{y}^{2}}{{b}^{2}}$=1(b>0)的焦点为($\sqrt{1+{b}^{2}}$,0),(-$\sqrt{1+{b}^{2}}$,0),
由题意可得$\sqrt{1+{b}^{2}}$=2,
解得b=$\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 本题考查双曲线的方程和性质,主要考查双曲线的焦点的求法,属于基础题.
练习册系列答案
相关题目
6.设$\overrightarrow{a}$,$\overrightarrow{b}$是非零向量,“$\overrightarrow{a}•\overrightarrow{b}$=|$\overrightarrow{a}$||$\overrightarrow{b}$|”是“$\overrightarrow{a}$$∥\overrightarrow{b}$”的( )
A. | 充分而不必要条件 | B. | 必要而不充分条件 | ||
C. | 充分必要条件 | D. | 既不充分也不必要条件 |
3.设函数f′(x)是奇函数f(x)(x∈R)的导函数,f(-1)=0,当x>0时,xf′(x)-f(x)<0,则使得f(x)>0成立的x的取值范围是( )
A. | (-∞,-1)∪(0,1) | B. | (-1,0)∪(1,+∞) | C. | (-∞,-1)∪(-1,0) | D. | (0,1)∪(1,+∞) |
20.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(0,1)的密度曲线)的点的个数的估计值为( )
附“若X-N=(μ,a2),则
P(μ-σ<X≤μ+σ)=0.6826.
p(μ-2σ<X≤μ+2σ)=0.9544.
附“若X-N=(μ,a2),则
P(μ-σ<X≤μ+σ)=0.6826.
p(μ-2σ<X≤μ+2σ)=0.9544.
A. | 2386 | B. | 2718 | C. | 3413 | D. | 4772 |
1.随着三星S6手机的上市,很多消费者觉得价格偏高,尤其是大部分学生可望而不可及,因此我市沃尔玛“三星手机专卖店”推出无抵押分期付款购买方式,该店对最近100名采用分期付款的购买者进行统计,统计结果如下表所示:
已知分3期付款的频率为0.15,并且店销售一部三星S6,顾客分1期付款,其利润为1000元;分2期或3期付款,其利润为1500元;分4期或5期付款,其利润为2000元,以频率作为概率.以此样本估计总体,试解决以下问题
(Ⅰ)求事件A:“购买的3位顾客中,恰好有1名顾客分4期付款”的概率;
(Ⅱ)用X表示销售一部三星S6手机的利润,求X的分布列及数学期望.
付款方式 | 分1期 | 分2期 | 分3期 | 分4期 | 分5期 |
频 数 | 35 | 25 | a | 10 | b |
(Ⅰ)求事件A:“购买的3位顾客中,恰好有1名顾客分4期付款”的概率;
(Ⅱ)用X表示销售一部三星S6手机的利润,求X的分布列及数学期望.