题目内容
3.已知椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左右焦点为F1,F2,P为椭圆上一点,且|PF1|•|PF2|的最大值的取值范围是[2c2,3c2],其中c=$\sqrt{{a}^{2}-{b}^{2}}$,则椭圆的离心率的取值范围是( )A. | [$\frac{1}{3}$,$\frac{1}{2}$] | B. | [$\frac{\sqrt{2}}{2}$,1) | C. | [$\frac{\sqrt{3}}{3}$,1) | D. | [$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$] |
分析 根据题意,|PF1|•|PF2|的最大值为a2,则由题意知2c2≤a2≤3c2,由此能够导出椭圆m的离心率e的取值范围.
解答 解:∵|PF1|+|PF2|=2a
∴|PF1|•|PF2|≤a2,
∴|PF1|•|PF2|max=a2,
∴由题意知2c2≤a2≤3c2,
∴$\sqrt{2}$c≤a≤$\sqrt{3}$c,
∴$\frac{\sqrt{3}}{3}≤e≤\frac{\sqrt{2}}{2}$.
故椭圆m的离心率e的取值范围[$\frac{\sqrt{3}}{3}$,$\frac{\sqrt{2}}{2}$].
故选:D.
点评 本题考查椭圆的方程与性质,确定|PF1|•|PF2|的最大值=a2是正确解题的关键.
练习册系列答案
相关题目
11.已知三棱锥A-PBC中,PA⊥面ABC,AB⊥AC,BA=CA=2PA=2,则三棱锥A-PBC底面PBC上的高是( )
A. | $\frac{\sqrt{6}}{6}$ | B. | $\frac{2\sqrt{6}}{3}$ | C. | $\frac{\sqrt{6}}{3}$ | D. | $\frac{4\sqrt{6}}{3}$ |
12.动点A(x,y)在圆x2+y2=1上绕坐标原点沿逆时针方向匀速旋转,12秒旋转一周,已知时间t=0时,点A的坐标为($\frac{1}{2}$,$\frac{\sqrt{3}}{2}$),则当0≤t≤6时,动点A的纵坐标y的取值范围是( )
A. | [-$\frac{1}{2}$,1] | B. | [-1,1] | C. | [-$\frac{\sqrt{3}}{2}$,$\frac{\sqrt{3}}{2}$] | D. | [-$\frac{\sqrt{3}}{2}$,1] |