题目内容

(本题满分13分)
如图,在六面体中,平面∥平面
⊥平面,,
.且,
(1)求证: ∥平面
(2)求二面角的余弦值;
(3) 求五面体的体积.

(1)略
(2)
(3)4
由已知,AD、DE、DG两两垂直,建立如图的坐标系,

则A(0,0,2),B(2,0,2),C(0,1,2),E(2,0,0),G(0,2,0),F(2,1,0)
(1)
,所以BF∥CG.又BF平面ACGD,故 BF//平面ACGD …4分
(2),设平面BCGF的法向量为
,令,则
而平面ADGC的法向量
  
故二面角D-CG-F的余弦值为.9分
(3)设DG的中点为M,连接AM、FM, 则
.……………13分
解法二设DG的中点为M,连接AM、FM,则由已知条件易证四边形DEFM是平行四边形,
所以MF//DE,且MF=DE又∵AB//DE,且AB=DE  ∴MF//AB,且MF=AB
∴四边形ABMF是平行四边形,即BF//AM,
又BF平面ACGD 故 BF//平面ACGD……………4分
(利用面面平行的性质定理证明,可参照给分)
(Ⅱ)由已知AD⊥面DEFG∴DE⊥AD ,DE⊥DG即DE⊥面ADGC ,
∵MF//DE,且MF=DE , ∴MF⊥面ADGC
在平面ADGC中,过M作MN⊥GC,垂足为N,连接NF,则
显然∠MNF是所求二面角的平面角.
∵在四边形ADGC中,AD⊥AC,AD⊥DG,AC=DM=MG=1

, ∴MN=  在直角三角形MNF中,MF=2,MN

故二面角D-CG-F的余弦值为…………9分
(3)
.……………13分
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网