题目内容
【题目】已知函数.
(1)若曲线在和处的切线相互平行,求的值;
(2)试讨论的单调性;
(3)设,对任意的,均存在,使得.试求实数的取值范围.
【答案】f′(x)=ax-(2a+1)+(x>0).
(1) f′(1)=f′(3),解得a=.(4分)
(2) f′(x)=(x>0).
①当0<a<时,>2,
在区间(0,2)和上,f′(x)>0;
在区间上,f′(x)<0,
故f(x)的单调递增区间是(0,2)和,单调递减区间是.(6分)
②当a=时,f′(x)=≥0,故f(x)的单调递增区间是(0,+∞).(8分)
③当a>时,0<<2,在区间和(2,+∞)上,f′(x)>0;在区间上,f′(x)<0,故f(x)的单调递增区间是和(2,+∞),单调递减区间是.(10分)
(3) 由已知,在(0,2]上有f(x)max<g(x)max.(11分)
由已知,g(x)max=0,由(2)可知,
①当0<a≤时,f(x)在(0,2]上单调递增,
故f(x)max=f(2)=2a-2(2a+1)+2ln2
=-2a-2+2ln2,
∴-2a-2+2ln2<0,解得a>ln2-1,ln2-1<0,故0<a≤.(13分)
②当a>时,f(x)在]上单调递增,在]上单调递减,
故f(x)max=f=-2--2lna.
由a>可知lna>ln>ln=-1,2lna>-2,-2lna<2,
∴-2-2lna<0,f(x)max<0,(15分)
综上所述,a>0.(16分)
【解析】
试题(1)先求出函数的导数,利用条件“曲线在和处的切线相互平行”得到,从而在方程中求出的值;(2)对参数的符号进行分类讨论,以确定方程的根是否在定义域内,并对时,就导数方程的根与的大小进行三种情况的分类讨论,从而确定函数的单调区间;(3)将问题中的不等式等价转化为,充分利用(2)的结论确定函数在区间上的最大值,从而求出参数的取值范围.
试题解析:函数定义域为,
(1)∵函数
依题意,,即,解得;
(2),
①当时,,,
在区间上,;在区间上,,
故函数的单调递增区间为,单调递减区间为;
②当时,,
在区间和上,;在区间上,,
故函数的单调递增区间为和,单调递减区间为;
③当时,,故的单调递增区间为;
④当时,,
在区间和上,;在区间上,,
故函数的单调递增区间为和,单调递减区间为;
(3)由已知,在(0,2]上有f(x)max<g(x)max.
由已知,g(x)max=0,由(2)可知,
①当a≤时,f(x)在(0,2]上单调递增,
故f(x)max=f(2)=2a-2(2a+1)+2ln2
=-2a-2+2ln2,
∴-2a-2+2ln2<0,解得a>ln2-1,ln2-1<0,故ln2-1<a≤.
②当a>时,f(x)在]上单调递增,在]上单调递减,
故f(x)max=f=-2--2lna.
由a>可知lna>ln>ln=-1,2lna>-2,-2lna<2,
∴-2-2lna<0,即f(x)max<0,符合题意。
综上所述,a>ln2-1.