题目内容
【题目】如图,在直三棱柱中,是上的一点,,且.
(1)求证:平面;
(2)若,求点到平面的距离.
【答案】(1)见解析;(2)
【解析】
(1)连接A1B交AB1于E,连接DE,根据中位线定理即可得出DE∥A1C,故而A1C∥平面AB1D1;
(2)过B作BF⊥B1D,则可证BF⊥平面AB1D,于是点A1到平面AB1D的距离等于C到平面AB1D的距离,等于B到平面AB1D的距离BF.
(1)如图,
连接,交于点,再连接,
据直棱柱性质知,四边形为平行四边形,为的中点,
∵当时,,∴是的中点,∴,
又平面,平面,∴平面.
(2)如图,在平面中,过点作,垂足为,
∵是中点,
∴点到平面与点到平面距离相等,
∵平面,∴点到平面的距离等于点到平面的距离,
∴长为所求,在中,,,,
∴,∴点到平面的距离为.
练习册系列答案
相关题目