题目内容

【题目】如图,已知过原点O的直线与函数的图象交于AB两点,分别过ABy轴的平行线与函数图象交于CD两点,若轴,则四边形ABCD的面积为_____

【答案】

【解析】

分析:设出A、B的坐标,求出OA、OB的斜率相等利用三点共线得出A、B的坐标之间的关系.再根据BC平行x轴,B、C纵坐标相等,推出横坐标的关系,结合之前得出A、B的坐标之间的关系即可求出A的坐标,从而解出B、C、D的坐标,最后利用梯形的面积公式求解即可.

详解:设点A、B的横坐标分别为x1、x2由题设知,x1>1,x2>1.
则点A、B纵坐标分别为log8x1、log8x2
因为A、B在过点O的直线上,所以

C、D坐标分别为(x1,log2x1),(x2,log2x2).
由于BC平行于x轴知log2x1=log8x2,即得log2x1=log2x2,∴x2=x13
代入x2log8x1=x1log8x2x13log8x1=3x1log8x1
由于x1>1log8x1≠0,∴x13=3x1.考虑x1>1解得x1=
于是点A的坐标为(,log8)即A(log23)
∴B(3log23),C(log23),D(3log23).
∴梯形ABCD的面积为S=(AC+BD)×BC=log23+log23)×2=log23
故答案为:log23

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网