题目内容
如图,将边长为2的正方形ABCD沿对角线BD折成一个直二面角,且EA⊥平面ABD,AE=.
(1)若,求证:AB∥平面CDE;
(2)求实数的值,使得二面角AECD的大小为60°.
(1)若,求证:AB∥平面CDE;
(2)求实数的值,使得二面角AECD的大小为60°.
(1)答案详见解析;(2)
试题分析:空间向量在立体几何中的应用,最大的优点就是避开了传统立体几何中“如何添加辅助线”这个难点,使得操作更模式化、易操作.需根据已知条件寻找(或添加)三条共点的两两垂直的三条垂线,分别作为轴,建立空间直角坐标系.(1)由已知,以的方向作为轴的正方向,建立如图所示的空间直角坐标系,用坐标表示有关点,要证明AB∥平面CDE,只需证明垂直于面CDE的法向量即可.本题还可以利用线面垂直的判定定理证明;(2)分别求出面和面的法向量,并求法向量的夹角,利用余弦值等于列方程,求即可.
试题解析:(1)如图建立空间指教坐标系,则A(0,0,0),B(2,0,0),C(1,1,),D(0,2,0),E(0,0,),
2分
设平面的一个法向量为,
则有,
取时, 4分
,又不在平面内,所以平面; 7分
(2)如图建立空间直角坐标系,则
A(0,0,0),B(2,0,0),C(1,1,),D(0,2,0),E(0,0,),
,
设平面的一个法向量为,
则有,取时, 9分
又平面的一个法向量为, 10分
因为二面角的大小为,,
即,解得 14分
又,所以. 15分
练习册系列答案
相关题目