题目内容
【题目】已知直线,斜率为的直线与x轴交于点A,与y轴交于点,过作x 轴的平行线,交于点,过作y轴的平行线,交于点,再过作x轴的平行线交于点,…,这样依次得线段、、、、…、、,记为点的横坐标,则__________.
【答案】
【解析】
先由题设条件得出点的坐标,根据它们之间的关系求出点的坐标,然后利用数列极限的运算性质求出.
解:∵斜率为的直线与x轴交于点A,与y轴交于点,直线,
∴A1(a,a).
∵A1B0∥x轴,∴B1(a,aq+a),A2(aq+a,aq+a).
∵B1A2∥x轴,∴B2(aq+a,aq2+aq+a).
同理可得:A3(aq2+aq+a,aq2+aq+a),
B3(aq2+aq+a,aq3+aq2+aq+a),…,
Bn(aqn﹣1+aqn﹣2+aqn﹣3+…aq2+aq+a,aqn+aqn﹣1+aqn﹣2+aqn﹣3+…aq2+aq+a),
∵xn为点Bn的横坐标,
∴xn=aqn﹣1+aqn﹣2+aqn﹣3+…aq2+aq+a.
故xn是首项为a,公比为q(0<q<1)的等比数列的前n项的和,
由数列极限的运算性质得:.
故答案为:.
练习册系列答案
相关题目