题目内容
【题目】已知圆,圆,如图,分别交轴正半轴于点.射线分别交于点,动点满足直线与轴垂直,直线与轴垂直.
(1)求动点的轨迹的方程;
(2)过点作直线交曲线与点,射线与点,且交曲线于点.问:的值是否是定值?如果是定值,请求出该定值;如果不是定值,请说明理由.
【答案】(1)(2)是定值,为.
【解析】
(1) 设,再根据三角函数的关系可得,,进而消参求得轨迹的方程即可.
(2) 设直线的方程为,再联立直线与(1)中椭圆的方程,根据弦长公式化简,代入韦达定理求解即可.
解:方法一:(1)如图设,则
,所以,.
所以动点的轨迹的方程为.
方法二:(1)当射线的斜率存在时,设斜率为,方程为,
由得,同理得,所以即有动点的轨迹的方程为.当射线的斜率不存在时,点也满足.
(2)由(1)可知为的焦点,设直线的方程为(斜率不为0时)且设点,,由得
所以,所以
又射线方程为,带入椭圆的方程得,即
,
所以
又当直线的斜率为时,也符合条件.综上,为定值,且为.
【题目】“黄梅时节家家雨”“梅雨如烟暝村树”“梅雨暂收斜照明”…江南梅雨的点点滴滴都流露着浓烈的诗情.每年六、七月份,我国长江中下游地区进入持续25天左右的梅雨季节,如图是江南镇2009~2018年梅雨季节的降雨量(单位:)的频率分布直方图,试用样本频率估计总体概率,解答下列问题:
(1)计算的值,并用样本平均数估计镇明年梅雨季节的降雨量;
(2)镇的杨梅种植户老李也在犯愁,他过去种植的甲品种杨梅,亩产量受降雨量的影响较大(把握超过八成).而乙品种杨梅这10年的亩产量(/亩)与降雨量的发生频数(年)如列联表所示(部分数据缺失).请你完善列联表,帮助老李排解忧愁,试想来年应种植哪个品种的杨梅受降雨量影响更小?并说明理由.
亩产量\降雨量 | 200~400之间 | 200~400之外 | 合计 |
2 | |||
1 | |||
合计 | 10 |
0.50 | 0.40 | 0.25 | 0.15 | 0.10 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.703 |
(参考公式:)