题目内容

【题目】选修4—4:极坐标与参数方程

在平面直角坐标系中,将曲线 (为参数) 上任意一点经过伸缩变换后得到曲线的图形.以坐标原点为极点,x轴的非负半轴为极轴,取相同的单位长度建立极坐标系,已知直线

Ⅰ)求曲线和直线的普通方程;

Ⅱ)点P为曲线上的任意一点,求点P到直线的距离的最大值及取得最大值时点P的坐标.

【答案】1, 2P

【解析】试题分析:(I)根据伸缩变换的公式代入原方程,可以得到伸缩后的曲线方程;

II利用点P在椭圆上设出参数坐标,根据点到直线的距离公式求三角函数的最值,并求出取得最值时的值.

试题解析:(I)由已知有为参数),消去

代入直线的方程得

曲线的方程为,直线的普通方程为.

II)由(I)可设点 .则点到直线的距离为:

故当,即取最大值

span>此时点的坐标为

练习册系列答案
相关题目

【题目】近年来,人们对食品安全越来越重视,有机蔬菜的需求也越来越大,国家也制定出台了一系列支持有机肥产业发展的优惠政策,鼓励和引导农民增施有机肥,藏粮于地,藏粮于技.根据某种植基地对某种有机蔬菜产量与有机肥用量的统计,每个有机蔬菜大棚产量的增加量(百斤)与使用有机肥料(千克)之间对应数据如下表:

使用有机肥料(千克)

3

4

5

6

7

8

9

10

产量增加量 (百斤)

2.1

2.9

3.5

4.2

4.8

5.6

6.2

6.7

1)根据表中的数据,试建立关于的线性回归方程(精确到);

2 若种植基地每天早上7点将采摘的某有机蔬菜以每千克10元的价格销售到某超市,超市以每千克15元的价格卖给顾客.已知该超市每天8点开始营业,22点结束营业,超市规定:如果当天16点前该有机蔬菜没卖完,则以每千克5元的促销价格卖给顾客(根据经验,当天都能全部卖完).该超市统计了100天该有机蔬菜在每天的16点前的销售量(单位:千克),如表:

每天16点前的

销售量(单位:千克)

100

110

120

130

140

150

160

频数

10

20

16

16

14

14

10

若以100天记录的频率作为每天16点前销售量发生的概率,以该超市当天销售该有机蔬菜利润的期望值为决策依据,说明该超市选择购进该有机蔬菜110千克还是120千克,能使获得的利润更大?

附:回归直线方程中的斜率和截距的最小二乘估计公式分别为:

参考数据:

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网