题目内容
【题目】在某超市,随机调查了100名顾客购物时使用手机支付的情况,得到如下的列联表,已知其中从使用手机支付的人群中随机抽取1人,抽到青年的概率为.
(1)根据已知条件完成列联表,并根据此资料判断是否有的把握认为“超市购物用手机支付与年龄有关”?
(2)现采用分层抽样从这100名顾客中按照“使用手机支付”和“不使用手机支付”中抽取得到一个容量为5的样本,设事件为“从这个样本中任选3人,这3人中至少有2人是使用手机支付的”,求事件发生的概率?
列联表
青年 | 中老年 | 合计 | |
使用手机支付 | 60 | ||
不使用手机支付 | 28 | ||
合计 | 100 |
0.001 | |||||
10.828 |
附:
【答案】(1)答案见解析;(2).
【解析】分析:(1)由从使用手机支付的人群中随机抽取1人的概率可计算出人数,从而计算出列联表中的各数据,再根据计算公式计算出,可得结论;
(2)从分层抽样知“使用手机支付”和“不使用手机支付”中抽取的人数分别是3和2,分别编号后用列举到列举出任取3人的所有可能事件,同时得出“这3人中至少有2人是使用手机支付的”的事件个数,再由概率公式计算出概率.
详解: (Ⅰ)从使用手机支付的人群中随机抽取1人,抽到青年的概率为
使用手机支付的人群中的青年的人数为人,
则使用手机支付的人群中的中老年的人数为人,所以列联表为:
青年 | 中老年 | 合计 | |
使用手机支付 | 48 | 12 | 60 |
不使用手机支付 | 12 | 28 | 40 |
合计 | 60 | 40 | 100 |
故有99.9%的把握认为“市场购物用手机支付与年龄有关”.
(2) 这100名顾客中采用分层抽样从“使用手机支付”和“不使用手机支付”中抽取得到一个容量为5的样本中:
使用手机支付的人有人,记编号为1,2,3
不使用手机支付的人有2人,记编号为a,b,
则从这个样本中任选3人有
(1,2,3)(1,2,
其中至少有2人是不使用手机支付的
(1,2,a) (1,2,b) (1,3,a)(1,3,b)(2,3,a)(2,3,b)(1,2,3)共7种,
故.