题目内容
【题目】在平面直角坐标系中,曲线的参数方程为(为参数),直线过原点且倾斜角为,以原点为极点,轴的正半轴为极轴建立极坐标系.
(1)求曲线和直线的极坐标方程;
(2)若相交于不同的两点,求的取值范围.
【答案】(1): ,:;(2)
【解析】
(1)利用同角的三角函数关系式中的平方和关系,把曲线的参数方程化成普通方程,再利用直角坐标方程和极坐标方程互化公式,把曲线的直角坐标方程化成极坐标方程.根据已知直接写出直线的极坐标方程;
(2)将直线与曲线的极坐标方程联立,根据一元二次方程根的判别式,结合一元二次方程根与系数关系、极径的定义、正弦函数的最值进行求解即可.
解:(1)由(为参数)有:,
所以:的极坐标方程为:,
直线的极坐标方程为:.
(2)联立:有:
根据题有:,所以:.
在极坐标系下设、,所以:,.
所以:.
因为:,所以:
所以:取值范围为:.
练习册系列答案
相关题目