题目内容
【题目】如图,在正三棱柱ABC﹣A1B1C1中,所有棱长均为1,则点B1到平面ABC1的距离为 .
【答案】
【解析】
试题分析:在立体几何中,求点到平面的距离是一个常见的题型,同时求直线到平面的距离、平行平面间的距离及多面体的体积也常转化为求点到平面的距离.本题采用的是“找垂面法”:即找(作)出一个过该点的平面与已知平面垂直,然后过该点作其交线的垂线,则得点到平面的垂线段.观察点的位置可知:点B1到平面ABC1的距离就等于点C到平面ABC1的距离,取AB得中点M,连接CM,C1M,过点C作CD⊥C1M,垂足为D,则平面ABC1⊥平面C1CM,所以CD⊥平面C1AB,故CD的长度即为点C到平面ABC1的距离,在Rt△C1CM中,利用等面积法即可求出CD的长度.
解:如图所示,取AB得中点M,连接CM,C1M,过点C作CD⊥C1M,垂足为D
∵C1A=C1B,M为AB中点,
∴C1M⊥AB
∵CA=CB,M为AB中点,
∴CM⊥AB
又∵C1M∩CM=M,
∴AB⊥平面C1CM
又∵AB平面ABC1,
∴平面ABC1⊥平面C1CM,平面ABC1∩平面C1CM=C1M,CD⊥C1M,
∴CD⊥平面C1AB,
∴CD的长度即为点C到平面ABC1的距离,即点B1到平面ABC1的距离
在Rt△C1CM中,C1C=1,CM=,C1M=
∴CD=,即点B1到平面ABC1的距离为
故答案为:
【题目】2013年1月,北京经历了59年来雾霾天气最多的一个月.据气象局统计,北京市2013年1月1日至1月30日这30天里有26天出现雾霾天气,《环境空气质量指数(AQI)技术规定(试行)》如表1:
表1 空气质量指数AQI分组表
AQI指数M | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
级别 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ |
状况 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
表2是某气象观测点记录的连续4天里AQI指数M与当天的空气水平可见度y(km)的情况,表3是某气象观测点记录的北京市2013年1月1日至1月30日的AQI指数频数分布表.
表2 AQI指数M与当天的空气水平可见度y(km)的情况
AQI指数M | 900 | 700 | 300 | 100 |
空气水平可见度y(km) | 0.5 | 3.5 | 6.5 | 9.5 |
表3 北京市2013年1月1日至1月30日AQI指数频数分布表
AQI指数M | [0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
频数 | 3 | 6 | 12 | 6 | 3 |
(1)设x=,根据表2的数据,求出y关于x的线性回归方程.
(参考公式:,.)
(2)小王在北京开了一家洗车店,经小王统计:当AQI指数低于200时,洗车店平均每天亏损约2000元;当AQI指数在200至400时,洗车店平均每天收入约4000元;当AQI指数不低于400时,洗车店平均每天收入约7000元.
①估计小王的洗车店在2013年1月份平均每天的收入;
②从AQI指数在[0,200)和[800,1000]内的这6天中抽取2天,求这2天的收入之和不低于5000元的概率.