题目内容
【题目】如图,四边形ABCD为正方形,PD⊥平面ABCD,PD∥QA,QA=AB=PD,则平面PQC与平面DCQ的位置关系为( )
A. 平行 B. 垂直
C. 相交但不垂直 D. 位置关系不确定
【答案】B
【解析】
由已知可得PD⊥DC,PD⊥DA,DC⊥DA,如图,以D为原点,建立空间直角坐标系,
设QA=1,则D(0,0,0),C(0,0,1),Q(1,1,0),P(0,2,0).
故=(1,1,0),=(0,0,1),=(1,-1,0).利用向量的数量积可得
PQ⊥平面DCQ,平面PQC⊥平面DCQ.得到结论.
由已知可得PD⊥DC,PD⊥DA,DC⊥DA,如图,以D为原点,建立空间直角坐标系,
设QA=1,则D(0,0,0),C(0,0,1),Q(1,1,0),P(0,2,0).
故=(1,1,0),=(0,0,1),=(1,-1,0).
故=0,=0,即,
故PQ⊥平面DCQ,平面PQC⊥平面DCQ.
【题目】2013年1月,北京经历了59年来雾霾天气最多的一个月.据气象局统计,北京市2013年1月1日至1月30日这30天里有26天出现雾霾天气,《环境空气质量指数(AQI)技术规定(试行)》如表1:
表1 空气质量指数AQI分组表
AQI指数M | 0~50 | 51~100 | 101~150 | 151~200 | 201~300 | >300 |
级别 | Ⅰ | Ⅱ | Ⅲ | Ⅳ | Ⅴ | Ⅵ |
状况 | 优 | 良 | 轻度污染 | 中度污染 | 重度污染 | 严重污染 |
表2是某气象观测点记录的连续4天里AQI指数M与当天的空气水平可见度y(km)的情况,表3是某气象观测点记录的北京市2013年1月1日至1月30日的AQI指数频数分布表.
表2 AQI指数M与当天的空气水平可见度y(km)的情况
AQI指数M | 900 | 700 | 300 | 100 |
空气水平可见度y(km) | 0.5 | 3.5 | 6.5 | 9.5 |
表3 北京市2013年1月1日至1月30日AQI指数频数分布表
AQI指数M | [0,200) | [200,400) | [400,600) | [600,800) | [800,1000] |
频数 | 3 | 6 | 12 | 6 | 3 |
(1)设x=,根据表2的数据,求出y关于x的线性回归方程.
(参考公式:,.)
(2)小王在北京开了一家洗车店,经小王统计:当AQI指数低于200时,洗车店平均每天亏损约2000元;当AQI指数在200至400时,洗车店平均每天收入约4000元;当AQI指数不低于400时,洗车店平均每天收入约7000元.
①估计小王的洗车店在2013年1月份平均每天的收入;
②从AQI指数在[0,200)和[800,1000]内的这6天中抽取2天,求这2天的收入之和不低于5000元的概率.