题目内容
11.不等式组$\left\{\begin{array}{l}{x+y-2≤0}\\{x≥0}\\{y≥0}\end{array}\right.$表示的平面区域的面积为2.分析 作出不等式组对应的平面区域,结合三角形的性质进行求解即可.
解答 解:作出不等式组对应的平面区域如图:
则A(0,2),B(2,0),
则三角形的面积S=$\frac{1}{2}×2×2=2$,
故答案为:2.
点评 本题主要考查三角形面积的计算,根据不等式组对应的平面区域是解决本题的关键.
练习册系列答案
相关题目
1.已知tanα,tanβ是方程x2+6x+7=0的根,那么tan(α-β)的值( )
A. | 2$\sqrt{2}$ | B. | -2$\sqrt{2}$ | C. | ±2$\sqrt{2}$ | D. | ±$\frac{\sqrt{2}}{4}$ |
19.设函数f(x)=ln(1+x)-ln(1-x),则f2(x)是( )
A. | 奇函数,且在(0,1)上是增函数 | B. | 奇函数,且在(0,1)上是减函数 | ||
C. | 偶函数,且在(0,1)上是增函数 | D. | 偶函数,且在(0,1)上是减函数 |
6.如果非0复数只有一个辐角为-$\frac{7π}{4}$,那么该复数的( )
A. | 辐角唯一 | B. | 辐角主值唯一 | C. | 辐角主值为-$\frac{7π}{4}$ | D. | 辐角主值为$\frac{7π}{4}$ |
3.已知x、y、z均为正实数,且2x=-log2x,2-y=-log2y,2-z=log2z,则x、y、z的大小关系是( )
A. | x<y<z | B. | z<x<y | C. | z<y<x | D. | y<x<z |