题目内容
【题目】已知圆经过点,和直线相切,且圆心在直线上.
(1)求圆的方程;
(2)已知直线经过原点,并且被圆截得的弦长为2,求直线的方程.
【答案】(1) (2) 或
【解析】试题分析:(1)由题可知,根据圆心在直线上,可将圆心设为,圆心与点的距离为半径,并且圆心到切线的距离也是半径,根据此等量关系,可得出,由此可求圆的方程;(2)由题可知,直线的斜率是否存在不可知,故需要分类讨论,当直线的斜率不存在时,可直接得到直线方程,当直线的斜率存在时,设直线方程为,由弦长公式可得,由此即可求得到直线的方程.
试题解析:解:(1)设圆心的坐标为,
则,化简得,解得.
,半径.
圆C的方程为.
(2)①当直线的斜率不存在时,直线的方程为,此时直线l被圆C截得的弦长为2,满足条件。
②当直线的斜率存在时,设直线的方程为,由题得,解得,直线 的方程为.
综上所述:直线l的方程为或.
练习册系列答案
相关题目
【题目】随着人们经济收入的不断增长,个人购买家庭轿车已不再是一种时尚.车的使用费用,尤其是随着使用年限的增多,所支出的费用到底会增长多少,一直是购车一族非常关心的问题.某汽车销售公司做了一次抽样调查,并统计得出某款车的使用年限(单位:年)与所支出的总费用(单位:万元)有如下的数据资料:
使用年限 | 2 | 3 | 4 | 5 | 6 |
总费用 | 2.2 | 3.8 | 5.5 | 6.5 | 7.0 |
若由资料知对呈线性相关关系.
线性回归方程系数公式:,.
(1)试求线性回归方程的回归系数,;
(2)当使用年限为10年时,估计车的使用总费用.