题目内容

在△ABC中,a,b,c分别为角A,B,C所对的边,若(a+b+c)(sinA+sinB-sinC)=asinB,又sinA=
3
2
,则sinB=(  )
A、
1
2
B、
3
2
C、
2
2
3
D、
2
6
-1
6
考点:正弦定理
专题:解三角形
分析:利用正弦定理求出A+B的余弦函数值,得到cos(A+B)=-
1
2
,继而求出sinB的值
解答: 解:由正弦定理可知(sinA+sinB+sinC)(sinA+sinB-sinC)=3sinAsinB
⇒(sinA+sinB)2-sin2C=3sinAsinB,
⇒sin2A+2sinAsinB+sin2B-sin2(A+B)=3sinAsinB,
⇒sin2A+sin2B-(sinAcosB+cosAsinB)2=sinAsinB,
⇒sin2A+sin2B-sin2A•cos2B-2sinAcosBcosAsinB-cos2A•sin2B=sinAsinB
⇒2sin2Asin2B-2sinAcosBsinBcosA=sinAsinB
⇒cosAcosB-sinAsinB=-
1
2

?cos(A+B)=-
1
2

∴A+B=120°,
∵sinA=
3
2

∴A=60°或120°(舍去),
∴B=60°
解得sinB=
3
2

故选:B
点评:本题考查正弦定理的应用,两角和与差的余弦函数的求法,注意解得范围,考查计算能力,另外利用正弦定理将条件中的角的正弦化为相应的边,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网