题目内容
【题目】如图,在四棱锥中,平面ABCD平面PAD,,,,,E是PD的中点.
证明:;
设,点M在线段PC上且异面直线BM与CE所成角的余弦值为,求二面角的余弦值.
【答案】(1)见解析;(2)
【解析】
(1)由平面平面的性质定理得平面,.在中,由勾股定理得,平面,即可得;
(2)以为坐标原点建立空间直角坐标系,由空间向量法和异面直线与所成角的余弦值为,得点M的坐标,从而求出二面角的余弦值.
(1)平面平面,平面平面= ,,所以 .由面面垂直的性质定理得平面,,在中,,,由正弦定理可得:,
,即,平面,.
(2)以为坐标原点建立如图所示的空间直角坐标系,则,,
,设 ,则,
,
得,,而,设平面的法向量为,由可得:,令,则,取平面的法向量,则,故二面角的余弦值为.
【题目】某土特产超市为预估2020年元旦期间游客购买土特产的情况,对2019年元旦期间的90位游客购买情况进行统计,得到如下人数分布表.
购买金额(元) | ||||||
人数 | 10 | 15 | 20 | 15 | 20 | 10 |
(1)根据以上数据完成列联表,并判断是否有的把握认为购买金额是否少于60元与性别有关.
不少于60元 | 少于60元 | 合计 | |
男 | 40 | ||
女 | 18 | ||
合计 |
(2)为吸引游客,该超市推出一种优惠方案,购买金额不少于60元可抽奖3次,每次中奖概率为(每次抽奖互不影响,且的值等于人数分布表中购买金额不少于60元的频率),中奖1次减5元,中奖2次减10元,中奖3次减15元.若游客甲计划购买80元的土特产,请列出实际付款数(元)的分布列并求其数学期望.
附:参考公式和数据:,.
附表:
2.072 | 2.706 | 3.841 | 6.635 | 7.879 | |
0.150 | 0.100 | 0.050 | 0.010 | 0.005 |
【题目】某城市的公交公司为了方便市民出行,科学规划车辆投放,在一个人员密集流动地段增设一个起点站,为了研究车辆发车间隔时间与乘客等候人数之间的关系,经过调查得出了如下数据:
间隔时间(分钟) | 10 | 11 | 12 | 13 | 14 | 15 |
等待人数(人) | 23 | 25 | 26 | 29 | 28 | 31 |
调查小组先从这六组数据中选取四组数据作线性回归分析,然后用剩下的两组数据进行检验
(1)求从这六组数据中选取四组数据后,剩下的的两组数据不相邻的概率:
(2)若先取的是后面四组数据,求关干的线性回归方程;
(3)规定根据(2)中线性回归方程预利的数据与用剩下的两组实际数据相差不超过人,则所求出的线性回归方程是“最佳回归方程”,请判断(2)中所求的是 “最佳回归方程”吗?为了使等候的乘客不超过人,则间隔时间设置为分钟合适吗?
附:对于一组组数据, 其回归直线 +的斜率和截距的最小二乘估计分别为: ,