题目内容
【题目】已知都是各项不为零的数列,且满足其中是数列的前项和,是公差为的等差数列.
(1)若数列是常数列,,,求数列的通项公式;
(2)若是不为零的常数),求证:数列是等差数列;
(3)若(为常数,),.求证:对任意的恒成立.
【答案】(1);(2)详见解析;(3)详见解析.
【解析】
(1)根据,可求得,再根据是常数列代入根据通项与前项和的关系求解即可.
(2)取,并结合通项与前项和的关系可求得再根据化简可得,代入化简即可知,再证明也成立即可.
(3)由(2) 当时,,代入所给的条件化简可得,进而证明可得,即数列是等比数列.继而求得,再根据作商法证明即可.
解:
.
是各项不为零的常数列,
则,
则由,
及得,
当时,,
两式作差,可得.
当时,满足上式,
则;
证明:,
当时,,
两式相减得:
即.
即.
又,
,
即.
当时,,
两式相减得:.
数列从第二项起是公差为的等差数列.
又当时,由得,
当时,由,得.
故数列是公差为的等差数列;
证明:由,当时,
,即,
,
,即,
即
,
当时,即.
故从第二项起数列是等比数列,
当时,.
.
另外,由已知条件可得,
又,
,
因而.
令,
则.
故对任意的恒成立.
【题目】改革开放以来,中国快递行业持续快速发展,快递业务量从上世纪年代的万件提升到2018年的亿件,快递行业的发展也给我们的生活带来了很大便利.已知某市某快递点的收费标准为:首重(重量小于等于)收费元,续重元(不足按算). (如:一个包裹重量为则需支付首付元,续重元,一共元快递费用)
(1)若你有三件礼物重量分别为,要将三个礼物分成两个包裹寄出(如:合为一个包裹,一个包裹),那么如何分配礼物,使得你花费的快递费最少?
(2)为了解该快递点2019年的揽件情况,在2019年内随机抽查了天的日揽收包裹数(单位:件),得到如下表格:
包裹数(单位:件) | ||||
天数(天) |
现用这天的日揽收包裹数估计该快递点2019年的日揽收包裏数.若从2019年任取天,记这天中日揽收包裹数超过件的天数为随机变量求的分布列和期望