题目内容
【题目】已知数列{an}中,a1=1,a2=3对任意n∈N* , an+2≤an+32n , an+1≥2an+1都成立,则a2016=
.
【答案】22016﹣1
【解析】解:∵an+1≥2an+1,
∴an+1≥2an+1≥22an﹣1+2+1≥23an﹣2+22+2+1≥…≥2na1+2n﹣1+2n﹣2+…+2+1= =2n+1﹣1,
∴ ﹣1.(n=1时也成立).
由对任意n∈N* , an+2≤an+32n , 即an+2﹣an≤32n ,
∴a3﹣a1≤3×2,
a4﹣a2≤3×22 ,
…,
an﹣2﹣an﹣4≤3×2n﹣4
an﹣1﹣an﹣3≤3×2n﹣3 ,
an﹣an﹣2≤3×2n﹣2 ,
an+1﹣an﹣1≤3×2n﹣1 .
∴an+1+an≤1+3+3×2+3×22+…+3×2n﹣2+3×2n﹣1=1+3× =3×2n﹣2.(n≥2).
∵an+1≥2an+1,
∴3an+1≤3×2n﹣2.
∴an≤2n﹣1.
∴2n﹣1≤an≤2n﹣1,
∴an=2n﹣1.
∴a2016=22016﹣1.
所以答案是:22016﹣1.
【考点精析】利用数列的通项公式对题目进行判断即可得到答案,需要熟知如果数列an的第n项与n之间的关系可以用一个公式表示,那么这个公式就叫这个数列的通项公式.
练习册系列答案
相关题目