题目内容

若函数上为增函数(为常数),则称为区间上的“一阶比增函数”,的一阶比增区间.
(1) 若上的“一阶比增函数”,求实数的取值范围;
(2) 若  (为常数),且有唯一的零点,求的“一阶比增区间”;
(3)若上的“一阶比增函数”,求证:
(1)  (2)

试题分析:
(1)根据新定义可得在区间上单调递增,即导函数在区间上恒成立,则有,再利用分离参数法即可求的a的取值范围.
(2)对求导数,求单调区间,可以得到函数有最小值,又根据函数 只有一个零点,从而得到,解出的值为1,再根据的“一阶比增区间”的定义,则的单调增区间即为的“一阶比增区间”.
(3)根据上的“一阶比增函数”的定义,可得到函数在区间上单调递增,则由函数单调递增的定义可得到,同理有,两不等式化解相加整理即可得到.
试题解析:
(1)由题得, 在区间上为增函数,则在区间上恒成立,即,综上a的取值范围为.
(2)由题得,(),则,当时,因为,所以, .因为,所以函数 在区间上单调递减,在区间上单调递增,即 .又因为有唯一的零点,所以(使解得带入验证),故 的单调增区间为.即的“一阶比增区间”为.
(3)由题得,因为函数 为上的“一阶比增函数”,所以在区间上的增函数,又因为,所以
……1,同理, ……2,则1+2得
,所以.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网