题目内容
已知A,B,C是平面内互异的三点,O为平面上任意一点,,求证:
(1)若A,B,C三点共线,则x+y=1;
(2)若x+y=1,则A,B,C三点共线.
证明:(1)∵A,B,C三点共线
∴
∴
即
∴
∵
∴
∴x+y=1
(2)∵
∴,
即
∴
故A,B,C 共线.
分析:(1)将三点共线转化为以这三点确定的两个向量共线;利用向量共线的充要条件得到等式;利用向量的运算法则将用O为起点的向量表示;利用平面向量的基本定理得证.
(2)通过代入消元将已知等式中的y消去,利用向量的运算法则化简等式;利用向量共线的充要条件得证.
点评:本题考查向量的运算法则、向量共线的充要条件、利用向量共线解决三点共线.
∴
∴
即
∴
∵
∴
∴x+y=1
(2)∵
∴,
即
∴
故A,B,C 共线.
分析:(1)将三点共线转化为以这三点确定的两个向量共线;利用向量共线的充要条件得到等式;利用向量的运算法则将用O为起点的向量表示;利用平面向量的基本定理得证.
(2)通过代入消元将已知等式中的y消去,利用向量的运算法则化简等式;利用向量共线的充要条件得证.
点评:本题考查向量的运算法则、向量共线的充要条件、利用向量共线解决三点共线.
练习册系列答案
相关题目
已知A、B、C是平面内不共线的三点,P为平面内的动点,且
=
+λ(
+
) (λ>0),则P的轨迹过△ABC的( )
OP |
| ||||
2 |
| ||
|
|
| ||
|
|
A、重心 | B、垂心 | C、内心 | D、外心 |
已知A、B、C是平面上不共线的三点,O是三角形ABC的重心,动点P满足
=
(
+
+2
),则点P一定为三角形ABC的( )
OP |
1 |
3 |
1 |
2 |
OA |
1 |
2 |
OB |
OC |
A、AB边中线的中点 |
B、AB边中线的三等分点(非重心) |
C、重心 |
D、AB边的中点 |