题目内容
17.已知A、B、C三点坐标分别为(0,-2),(0,0),(3,1),点M满足$\overrightarrow{AM}=2\overrightarrow{MC}$,点N满足$\overrightarrow{AN}$=-3$\overrightarrow{NB}$,点P满足PM⊥PN,则P点的轨迹方程是x2+y2-2x-y=0.分析 利用点M满足$\overrightarrow{AM}=2\overrightarrow{MC}$,点N满足$\overrightarrow{AN}$=-3$\overrightarrow{NB}$,求出M,N的坐标,利用点P满足PM⊥PN,求出P点的轨迹方程.
解答 解:由题意,设M(a,b),N(m,n),则
∵A、B、C三点坐标分别为(0,-2),(0,0),(3,1),点M满足$\overrightarrow{AM}=2\overrightarrow{MC}$,点N满足$\overrightarrow{AN}$=-3$\overrightarrow{NB}$,
∴(a,b+2)=2(3-a,1-b),(m,n+2)=-3(-m,-n),
∴$\left\{\begin{array}{l}{a=6-2a}\\{b+2=2-2b}\end{array}\right.$,$\left\{\begin{array}{l}{m=3m}\\{n+2=3n}\end{array}\right.$,
∴$\left\{\begin{array}{l}{a=2}\\{b=0}\end{array}\right.$,$\left\{\begin{array}{l}{m=0}\\{n=1}\end{array}\right.$,
∴M(2,0),N(0,1),
设P(x,y),则
∵PM⊥PN,
∴(2-x,-y)•(-x,1-y)=0,
∴-x(2-x)-y(1-y)=0,
∴x2+y2-2x-y=0.
故答案为:x2+y2-2x-y=0.
点评 本题考查点P满足PM⊥PN,求P点的轨迹方程,确定M,N的坐标是关键.
练习册系列答案
相关题目
9.设y=8x2-lnx,则此函数在区间(0,$\frac{1}{4}$)内为( )
A. | 单调递增 | B. | 有增有减 | C. | 单调递减 | D. | 不确定 |
7.△ABC中,sinA:sinB:sinC=2:$\sqrt{6}$:($\sqrt{3}$+1),则三角形的最小内角是( )
A. | 60° | B. | 45° | C. | 30° | D. | 以上答案都不对 |