题目内容

【题目】已知椭圆的焦距为,且过点

1)求椭圆的方程;

2)已知,是否存在使得点关于的对称点(不同于点)在椭圆上?若存在求出此时直线的方程,若不存在说明理由.

【答案】1;(2)不存在k

【解析】

试题(1)由2c=,得;又点在椭圆上,.解方程组求出,即可得椭圆的方程;(2)当时,直线,可求出点,检验知,不在椭圆上;当时,可设直线,即代入整理得,因为,所以关于直线对称,则其中点在直线.所以,解得因为此时点在直线上,所以对称点与点重合,不合题意所以不存在满足条件.

试题解析:(1)由已知,焦距为2c=

在椭圆上,

故,所求椭圆的方程为

2)当时,直线,点不在椭圆上;

时,可设直线,即

代入整理得

因为,所以

关于直线对称,则其中点在直线

所以,解得因为此时点在直线上,

所以对称点与点重合,不合题意所以不存在满足条件.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网