题目内容
【题目】(本小题满分12分)一批产品需要进行质量检验,检验方案是:先从这批产品中任取4件作检验,这4件产品中优质品的件数记为n。如果n=3,再从这批产品中任取4件作检验,若都为优质品,则这批产品通过检验;如果n=4,再从这批产品中任取1件作检验,若为优质品,则这批产品通过检验;其他情况下,这批产品都不能通过检验。
假设这批产品的优质品率为50%,即取出的产品是优质品的概率都为,且各件产品是否为优质品相互独立
(1)求这批产品通过检验的概率;
(2)已知每件产品检验费用为100元,凡抽取的每件产品都需要检验,对这批产品作质量检验所需的费用记为X(单位:元),求X的分布列及数学期望。
【答案】(1)记该批产品通过检验为事件A;则;
(2)X的可能取值为400、500、800;
,,,则X的分布列为
X | 400 | 500 | 800 |
P |
【解析】(1)利用相互独立事件模型计算概率;(2)在(1)的基础上,利用对立事件算出X为400、500、800时的概率,进而列出分布列,求出期望.
练习册系列答案
相关题目
【题目】进入21世纪,互联网和通讯技术高速发展使商务进入一个全新的阶段,网上购物这一方便、快捷的购物形式已经被越来越多的人所接受某互联网公司为进一步了解大学生的网上购物的情况,对大学生的消费金额进行了调查研究,得到如下统计表:
组数 | 消费金额元 | 人数 | 频率 |
第一组 | 1100 | ||
第二组 | 3900 | ||
第三组 | 3000 | p | |
第四组 | 1200 | ||
第五组 | 不低于200元 | m |
求m,p的值;
该公司从参与调查且购物满150元的学生中采用分层抽样的方法抽取作为中奖用户,再随机抽取中奖用户的获得一等奖求第五组至少1人获得一等奖的概率.