题目内容
【题目】设集合A={x∈R|x2+4x=0},B={x∈R|x2+2(a+1)x+a2-1=0,a∈R},若BA,求实数a的值.
【答案】a≤-1或a=1.
【解析】
先解方程得集合A,再由 BA得B为A子集,根据子集四种情况分类讨论,解出实数a的值.注意对结果要验证
解 ∵A={0,-4},BA,于是可分为以下几种情况.
(1)当A=B时,B={0,-4},
∴由根与系数的关系,得解得a=1.
(2)当B≠A时,又可分为两种情况.
①当B≠时,即B={0}或B={-4},
当x=0时,有a=±1;
当x=-4时,有a=7或a=1.
又由Δ=4(a+1)2-4(a2-1)=0,
解得a=-1,此时B={0}满足条件;
②当B=时,Δ=4(a+1)2-4(a2-1)<0,
解得a<-1.
综合(1)(2)知,所求实数a的取值为a≤-1或a=1.
练习册系列答案
相关题目
【题目】某研究型学习小组调查研究高中生使用智能手机对学习的影响,部分统计数据如下:
使用智能手机 | 不使用智能手机 | 合计 | |
学习成绩优秀 | |||
学习成绩不优秀 | |||
合计 |
(1)根据以上统计数据,你是否有 的把握认为使用智能手机对学习有影响?
(2)为了进一步了解学生对智能手机的使用习惯,现在对以上使用智能手机的高中时采用分层抽样的方式,抽取一个容量为 的样本,若抽到的学生中成绩不优秀的比成绩优秀的多 人,求 的值.
|
|
|
|
|
|
|
|
|
|
|
|