题目内容
【题目】如图,在几何体ABCDEF中,四边形ABCD是菱形,BE⊥平面ABCD,DF∥BE,且DF=2BE=2,EF=3.
(1)证明:平面ACF⊥平面BEFD
(2)若二面角A﹣EF﹣C是二面角,求直线AE与平面ABCD所成角的正切值.
【答案】
(1)证明:∵四边形ABCD是菱形,∴AC⊥BD,
∵BE⊥平面ABCD,∴BE⊥AC,
∴AC⊥平面BEFD,
∵AC平面ACF,∴平面ACF⊥平面BEFD
(2)解:设AC与BD的交点为O,由(1)得AC⊥BD,
分别以OA,OB为x轴,y轴,建立空间直角坐标系,
∵BE⊥平面ABCD,∴BE⊥BD,
∵DF∥BE,∴DF⊥BD,
∴BD2=EF2﹣(DF﹣BE)2=8,∴BD=2 .
设OA=a,(a>0),
由题设得A(a,0,0),C(﹣a,0,0),E(0, ),F(0,﹣ ,2),
设m=(x,y,z)是平面AEF的法向量,
则 ,取z=2 ,得 =( ),
设 是平面CEF的一个法向量,
则 ,取 ,得 =(﹣ ,1,2 ),
∵二面角A﹣EF﹣C是直二面角,
∴ =﹣ +9=0,解得a= ,
∵BE⊥平面ABCD,
∴∠BAE是直线AE与平面ABCD所成的角,
∴AB= =2,∴tan .
∴直线AE与平面ABCD所成角的正切值为 .
【解析】(1)推导出AC⊥BD,BE⊥AC,从而AC⊥平面BEFD,由此能证明平面ACF⊥平面BEFD.(2)设AC与BD的交点为O,分别以OA,OB为x轴,y轴,建立空间直角坐标系,利用向量法能求出直线AE与平面ABCD所成角的正切值.
练习册系列答案
相关题目